A search for massive young stellar objects with $\mathbf{9 8} \mathrm{CH}_{3} \mathbf{O H}$ maser sources*

Tie Liu, Yue-Fang Wu and Ke Wang
Department of Astronomy, Peking University, Beijing 100871, China; yfwu@vega.bac.pku.edu.cn

Received 2008 July 10; accepted 2009 October 23

Abstract

Using the 13.7 m telescope of the Purple Mountain Observatory (PMO), a survey of the $J=1-0$ lines of CO and its isotopes was carried out on 98 methanol maser sources in January 2008. Eighty-five sources have infrared counterparts within one arcmin. In the survey, except for 43 sources showing complex or multiple-peak profiles, almost all the ${ }^{13} \mathrm{CO}$ line profiles of the other 55 sources have large line widths of $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ on average and are usually asymmetric. Fifty corresponding Infrared Astronomical Satellite (IRAS) sources of these 55 sources have $L_{\text {bol }}$ larger than $10^{3} L_{\odot}$, which can be identified as possible high-mass young stellar sources. Statistics show that the ${ }^{13} \mathrm{CO}$ line widths correlate with the bolometric luminosity of the associated IRAS sources. Here, we also report the mapping results of two sources: IRAS 06117+1350 and IRAS 07299-1651. Two cores were found in IRAS $06117+1350$ and one core was detected in IRAS 07299-1651. The northwest core in IRAS $06117+1350$ and the core in IRAS 07299-1651 can be identified as precursors of UC Hir regions or high-mass protostellar objects (HMPOs). The southeast core of IRAS $06117+1350$ has no infrared counterpart, seeming to be at a younger stage than the pre-UC Hir phase.

Key words: stars: formation — ISM: clouds — ISM: methanol maser

1 INTRODUCTION

The formation and evolution of massive stars is still a mystery and our understanding of how highmass stars form and evolve lags behind that of low-mass stars, which is understood better using the theory constructed by Shu et al. (1987). High-mass stars can produce an enormous impact on their local environment and the evolution of the whole Galaxy. However, due to their distant location, growth and development in clusters and short evolutionary time scales, it is difficult to find samples of high-mass young sources to investigate their formation processes.

In the past, interstellar $\mathrm{H}_{2} \mathrm{O}$ masers (e.g. Plume et al. 1992; Wu et al. 2006) were used as tracers for high-mass star formation regions in the early evolutionary phase. However, $\mathrm{H}_{2} \mathrm{O}$ masers can also be found in low-mass star formation regions (e.g.,Wu et al. 2004), while methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ masers seem to be exclusively associated with high-mass star formation regions (e.g. Minier et al. 2003). Methanol masers are traditionally divided into two classes. Class II methanol masers are found in the vicinity of high-mass young stellar objects, while Class I methanol masers are believed to trace

[^0]distant parts of the outflows from these high-mass star formation regions (Sobolev et al. 2005). With the motivation of finding more pre-UC HiI regions or even more earlier high-mass stellar objects, we carried out a survey of $J=1-0$ lines of ${ }^{12} \mathrm{CO}$ and its isotopes ${ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}$ on 98 methanol maser sources. The next section describes the observations. The survey results and mapping results will be given and discussed in Section 3. Section 4 summarizes the paper.

2 OBSERVATIONS

The observations were made in January 2008 with the 13.7 m telescope of PMO at Qinghai Station. The ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}(J=1-0)$ lines were observed simultaneously by a superconductor receiver. The back-end is equipped with three acousto-optic spectrometers (AOSs). Every spectrometer has 1024 channels. The total bandwidths were $145.330 \mathrm{MHz}, 42.762 \mathrm{MHz}$ and 43.097 MHz for ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}$ lines, corresponding to velocity resolutions of $0.37,0.11$ and $0.12 \mathrm{~km} \mathrm{~s}^{-1}$, respectively. The system temperatures during the observation ranged from 200 K to 350 K (SBD), depending on the weather. The half-power beamwidth (HPBW) at 112 GHz was $\sim 59^{\prime \prime}$. The pointing accuracy of the telescope was better than $8^{\prime \prime}$, and the main beam efficiency at the zenith was about 0.67.

We adopted the position switch mode for all the spectral measurements. Our mapping steps toward right ascension and declination directions were both 1 arcmin. The integrating time was ~ 3 minutes per position. The noise level of the antenna temperature $T_{\mathrm{A}}{ }^{*}$ was usually about 0.4 K for the ${ }^{12} \mathrm{CO}, 0.3 \mathrm{~K}$ for the ${ }^{13} \mathrm{CO}$ and 0.2 K for the $\mathrm{C}^{18} \mathrm{O}(J=1-0)$ band. For the data analysis, the GILDAS software package including CLASS and GREG was employed (Guilloteau \& Lucas 2000).

3 RESULTS AND DISCUSSION

3.1 Sample Analysis

Ninety-eight sources were observed, 29 of which belong to Class I methanol masers. Table 1 presents basic parameters of all the sources surveyed. The associated IRAS sources within $3^{\prime} \times 3^{\prime}$ are presented in Col. (2). Eighty-five have IR counterpart candidates within one arcmin. Cols. (3)-(6) give the equatorial coordinates and the Galactic coordinates, respectively. The color indices $\log \left(F_{25} / F_{12}\right)$ and $\log \left(F_{60} / F_{12}\right)$ are presented in Cols. (7)-(8) $\left(F_{12}, F_{25}\right.$, and F_{60} represent the flux at $12 \mu \mathrm{~m}, 25 \mu \mathrm{~m}$ and $60 \mu \mathrm{~m}$, respectively). Col. (9) lists the fluxes at $100 \mu \mathrm{~m}$. The types of these methanol masers and the related references are placed in Cols. (10)-(11).

Figure 1 shows the distribution of the sources surveyed in Galactic coordinates. The sample sources are concentrated on the Galactic plane $\left(|b|<2^{\circ}\right)$ and about 90% are found in the first quadrant. Only Orion's source has $|b|>15^{\circ}$, and 72 sources are located in $0<l<45^{\circ}$.

The locations of the associated IRAS sources in the color-color planes are plotted in Figure 2. The distributions show that about 75% of the Class I and 63% of the Class II methanol maser sources observed have IRAS color indices satisfying the criteria of the UC HII regions established by Wood \& Churchwell (1989). All of these UC HII region candidates, except for Orion's source, have fluxes larger than 100 Jy at $100 \mu \mathrm{~m}$.

3.2 Survey Results and Discussion

All the 98 sources are detected with $J=1-0$ lines of ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}$. Forty-three sources have too-complex line profiles and will be studied further. The other fifty-five sources were analyzed, including 17 Class I methanol maser sources. Figure 3 presents the spectra of all the 55 sources and one source, IRAS 18403-0417, which has blended lines. The gray, green and red lines represent ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}$ respectively. The ${ }^{12} \mathrm{CO}$ spectra of IRAS 18414-1723, IRAS 18353-0628,

Table 1 Parameters of All the Sources Surveyed

| | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 1 - Continued.

| | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

G32.74-0.07 and G39.10+0.48 are blended, but the relevant ${ }^{13} \mathrm{CO}$ emission spectra can be distinguished well. So, these four sources are also analyzed. In the 55 sources, we detected significant ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ signals, but only 60% of them showed obvious $\mathrm{C}^{18} \mathrm{O}$ signals. No differences are found in the detection rate of $J=1-0$ lines of CO isotopes between Class I and Class II methanol maser sources. These 55 sources present profuse ${ }^{13} \mathrm{CO}$ line profiles. About 40% of them have wings and nearly 20 sources have more than one component. We fitted these ${ }^{13} \mathrm{CO}$ lines with a Gaussian function. We distinguish between several different non-Gaussian ${ }^{13} \mathrm{CO}$ line profiles with the following characteristics: (a) wings; (b) red wing; (c) blue wing; (d) red shoulder; (e) red asymmetry; (f) blue asymmetry; (g) flat top; (h) two or three components.

Fig. 1 Galactic distribution of the sources surveyed. The dashed lines indicate the region with $|b|<$ 2° and $0<l<90^{\circ}$. Nearly all the sources are crowded on the Galactic plane, and in the longitude range, 0° to 60°, the plane is very densely populated.

Fig. 2 Left panel describes the color-color distribution of the 29 Class I methanol maser sources and the right panel is for the 69 Class II methanol maser sources. The color box of UC Hir regions established by Wood \& Churchwell (1989) is indicated by the dashed lines in both panels.

The identities of these ${ }^{13} \mathrm{CO}$ spectral characteristics are presented in Col. (12) of Table 2. Possible clues of high velocity gas were detected in five sources of Class I and nine sources of Class II methanol maser sources (see the last column of Table 2). There seem to be no differences in the high velocity gas detection rate between Class I and Class II methanol maser sources. Detailed investigations with denser molecular probes such as HCN and CS are needed.

Observation parameters, including the antenna temperature $T_{\mathrm{A}}{ }^{*}, V_{\mathrm{LSR}}$ and the ${ }^{13} \mathrm{CO}$ line widths (FWHM) of each component, were obtained and are shown in Cols. (2)-(4) of Table 2. Cols. (5)-(6) list the distances from the Galactic center (R) and the Sun (D). Nine components cannot provide available distances from fitting the Galactic rotational curve. Col. (7) presents the bolometric luminosity calculated with the formation in Casoli et al. (1986):

$$
\begin{equation*}
L_{(5-1000 \mu \mathrm{~m})}=4 \pi D^{2} \times 1.75 \times\left(F_{12} / 0.79+F_{25} / 2+F_{60} / 3.9+F_{100} / 9.9\right) \tag{1}
\end{equation*}
$$

Fig. 3 Spectra of emission line samples. The gray, green and red lines (see electronic version) represent ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O} J=1-0$, respectively. The source names are drawn on the upper-left corners of each panel. The ${ }^{12} \mathrm{CO}$ spectra of IRAS 18414-1723, IRAS 18353-0628, G32.74-0.07 and G39.10+0.48 are blended, but the respective ${ }^{13} \mathrm{CO}$ emission spectra can be distinguished well. Source G29.86-0.05 is a sample with blended ${ }^{13} \mathrm{CO}$ emission lines. The properties of these ${ }^{13} \mathrm{CO}$ emission line profiles can be found in Col. (12) of Table 2.

Fig. 3 - Continued.

Fig. 3 - Continued.

Fig. 3 - Continued.

Fig. 3 - Continued.

Fig. 3 - Continued.
where D is the distance. Fifty of the 55 sources have $L_{\text {bol }}>10^{3} L_{\odot}$, which are supposed to be massive star formation regions.

Assuming that ${ }^{12} \mathrm{CO}$ is optically thick, we derived the excited temperatures $T_{\text {ex }}$ following Garden et al. (1991). Assuming that ${ }^{13} \mathrm{CO}$ is optically thin, then the optical depth and column density of ${ }^{13} \mathrm{CO}$ can be straightforwardly obtained under the local thermodynamic equilibrium assumption (LTE). With the abundance ratio $\left[\mathrm{H}_{2}\right] /\left[{ }^{13} \mathrm{CO}\right]=8.9 \times 10^{5}$, the column density of H_{2} was calculated. The results are listed in Cols. (8)-(11).

Table 2 Sources with Resolved Components

Name (1)	$T_{\mathrm{A}}{ }^{*}$ (K) (2)	$\begin{gathered} V_{\mathrm{LSR}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ (3) \end{gathered}$	$\begin{aligned} & \text { FWHM } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$ (4)	R (kpc) (5)	D (kpc) (6)	$L_{\text {bol }}$ $\left(L_{\odot}\right)$ (7)	$T_{\text {ex }}$ (K) (8)	τ_{13} (9)	$\begin{gathered} N\left({ }^{13} \mathrm{CO}\right) \\ \left(10^{16} \mathrm{~cm}^{-2}\right) \\ (10) \end{gathered}$	$\begin{gathered} N\left(\mathrm{H}_{2}\right) \\ \left(10^{22} \mathrm{~cm}^{-2}\right) \\ (11) \end{gathered}$	Pro (12)
02455+6034	1.3(9)	-42.51 (0)	2.78(1)	12.19	4.52	1.1×10^{4}	16.04	0.22	0.9	0.8	d
	1.2(8)	-37.40 (0)	2.78(3)	11.62	3.86	8.2×10^{3}	13.22	0.27	0.8	0.7	d
OrionS	6.5(1)	7.80(4)	4.73(7)	9.39	1.06	9.4×10^{3}	47.92	0.26	14.2	1.2	e
06056+2131	5.8(0)	2.66 (9)	2.99(5)	9.38	0.89	4.0×10^{3}	19.99	0.81	5.3	4.7	
G188.9+0.9	4.4(4)	3.06 (8)	3.22(6)	9.52	1.03	3.1×10^{3}	18.78	0.61	3.8	3.4	a
06117+1350	2.1(5)	17.80(1)	3.42(8)	12.25	3.86	5.8×10^{4}	20.52	0.22	1.7	1.6	f
07299-1651	3.4(7)	16.50(3)	2.89(3)	9.57	1.62	8.5×10^{3}	15.04	0.64	2.4	2.1	a
G10.47+0.03	2.8(1)	67.65(2)	9.31(2)	3.08	5.69	3.8×10^{5}	13.18	0.61	5.8	5.2	g
G10.6-0.4	6.5(3)	-2.65(0)	6.00(7)	9.26	17.48	8.2×10^{6}	20.99	0.89	12.7	11.4	g
	1.4(3)	29.08(3)	5.05(9)	4.92	3.69	3.7×10^{5}	7.77	0.69	8.5	7.6	d
G11.94-0.62	2.5(7)	35.78(9)	2.86(1)	4.72	3.94	1.0×10^{5}	8.71	1.39	2.0	1.8	c,g
	2.6(6)	39.48(0)	3.05(2)	4.5	4.17	1.2×10^{5}	7.51	4.45	5.4	4.9	g
18144-1723	0.5(0)	16.73(0)	6.23(0)	6.45	2.13	6.7×10^{3}	9.92	0.13	0.5	0.5	g
	0.6(3)	41.65(7)	6.18(8)	4.68	4.04	2.4×10^{4}	6.88	0.32	0.7	0.6	
	1.4(6)	48.15(8)	2.99(0)	4.36	4.39	2.8×10^{4}	7.15	0.89	1.0	0.9	
G14.33-0.64	4.6(3)	21.52(3)	5.44(6)	6.1	2.51	2.2×10^{4}	12.54	1.61	8.3	7.4	g
G15.03-0.68	8.1(9)	20.00(1)	5.34(6)	6.31	2.29	4.9×10^{5}	32.03	0.61	17.0	15.2	e,g
18181-1534	1.1(7)	-5.44(3)	3.31(2)	9.54	17.44	2.5×10^{5}	7.8	0.52	0.7	0.7	g
	2.6(2)	16.90(6)	2.45 (5)	6.65	1.94	3.1×10^{3}	10.13	0.94	1.5	1.4	e
18316-0602	3.4(7)	42.10(5)	4.09(5)	5.9	3.06	3.0×10^{4}	11.16	1.21	3.8	3.4	e
	1.1(0)	47.59(4)	6.06(9)	5.66	3.36	3.6×10^{4}	8.01	0.46	1.2	1.1	g
18353-0628	1.3(3)	54.12(6)	5.45(8)	5.41	3.7	3.8×10^{4}	8.46	0.52	1.4	1.2	g
	1.3(4)	97.32(5)	5.18(4)	4.15	5.75	9.2×10^{4}	9.31	0.44	1.3	1.1	f
	0.6(4)	105.88(4)	4.03(7)	3.97	6.19	1.1×10^{5}	6.09	0.43	0.5	0.4	g
MMI-119	0.4(5)	99.18(8)	4.04(0)	4.18	5.87	2.7×10^{4}	6.35	0.26	0.3	0.3	g
	1.0(2)	108.28(2)	2.51(4)	3.99	6.41	3.2×10^{4}	6.18	0.77	0.6	0.5	g
G29.95-0.02	4.6(0)	98.68(2)	8.53(9)	4.43	6.1	9.0×10^{5}	17.75	0.71	10.6	9.5	d
MMI-127	2.4(9)	96.94(9)	6.25(6)	4.56	6.17	1.3×10^{5}	8.53	1.39	4.3	3.8	e
G32.74-0.07	0.8(7)	10.29(3)	0.97(5)	7.92	0.7	0.5×10^{3}	6.15	0.62	0.2	0.2	
	1.2(9)	36.96(6)	5.27(2)	6.51	2.54	6.9×10^{3}	7.59	0.64	1.4	1.2	g
	0.7(0)	78.24(1)	2.51(4)	5.1	4.94	2.6×10^{4}	5.56	0.61	0.4	0.3	g
G37.60+0.42	1.5(0)	89.37(2)	2.27(0)	5.07			6.55	1.23	0.9	0.8	c
18592+0108	2.3(4)	39.35(4)	2.54(0)	6.51	2.66	1.9×10^{5}	13.53	0.46	1.2	1.1	
	3.8(6)	42.89(3)	4.44(0)	6.37	2.87	2.2×10^{5}	13.53	0.92	4.4	3.9	
19078+0901	3.0(1)	12.04(5)	6.78(8)	7.97	0.76	2.0×10^{4}	21.05	0.32	5.1	4.6	e
	2.3(1)	2.78(8)	7.96(5)	8.47	12.35	5.5×10^{6}	16.96	0.32	4.0	3.6	g
MMI-138	3.1(0)	59.12(4)	7.02(8)	6.19	4.71	3.3×10^{5}	13.13	0.7	5.0	4.5	f
19186+1440	1.2(7)	-21.10 (7)	2.68(5)	9.93	13.08	4.9×10^{4}	8.89	0.45	0.6	0.6	g
19216+1429	0.8(5)	52.39(3)	4.38(8)	6.5	4.88	9.8×10^{4}	7.79	0.35	0.7	0.6	g
	0.4(8)	61.16(1)	8.16(4)	6.24			6.32	0.28	0.7	0.6	
19303+1651	1.2(8)	59.73(6)	3.96(1)	6.36			8.76	0.46	14.3	12.7	b,i
19388+2357	3.0(3)	34.50(6)	2.74(5)	7.26			8.23	3.34	4.3	3.8	
MMI-145	4.9(2)	22.67(2)	3.22(4)	7.68	2.05	1.2×10^{4}	18.37	0.74	4.4	4.0	a
20081+3122	4.2(8)	11.09(7)	4.02(3)	8.17	1.13	5.2×10^{3}	11.77	1.64	5.6	5.0	
20290+4052	2.0(1)	-1.62(4)	2.93(8)	8.7	3.91	3.0×10^{3}	9.12	0.99	1.6	1.4	g
20350+4126	3.5(0)	-2.87(0)	3.13(0)	8.75	3.83	6.5×10^{4}	13.69	0.96	3.3	3.0	c
GL2789	2.8(7)	-43.86 (8)	2.52(5)	10.89	6.16	8.6×10^{4}	15	0.6	1.9	1.7	c
R146	3.0(0)	-9.73(9)	1.62(9)	9.07			15.38	0.61	1.3	1.2	
S156A	3.0(6)	-51.51 (2)	4.16(0)	11.63	5.54	1.3×10^{5}	27.38	0.26	4.3	3.8	f
05274+3345	5.1(9)	-3.66(5)	2.63(6)	10.41	1.92	5.3×10^{3}	16.42	1	4.0	3.6	
06099+1800	6.9(1)	7.15(2)	3.07(6)	10.21	1.74	2.9×10^{4}	29.03	0.56	7.5	6.7	
G8.68-0.37	1.4(2)	18.53(9)	2.04(6)	5.44	3.12	6.3×10^{4}	9.79	0.43	0.5	0.5	
	3.8(3)	36.65(8)	7.04(4)	3.98	4.64	1.4×10^{5}	13.81	0.87	6.7	6.1	e
G10.30-0.15	3.7(1)	12.86(8)	5.90(6)	6.43	2.12	8.9×10^{4}	14.94	0.71	5.4	4.8	b

Table 2 - Continued.

	$T_{\mathrm{A}}{ }^{*}$ $(\mathrm{~K})$	V_{LSR} $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	FWHM $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	R (kpc)	D (kpc)	L_{bol} $\left(L_{\odot}\right)$	$T_{\text {ex }}$ (K)	τ_{13}	$N\left({ }^{13} \mathrm{CO}\right)$ $\left(10^{16} \mathrm{~cm}^{-2}\right)$	$N\left(\mathrm{H}_{2}\right)$ $\left(10^{22} \mathrm{~cm}^{-2}\right)$	Pro
Name	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
(1)	$0.9(3)$	$98.05(1)$	$3.43(3)$	2.62	6.38	5.0×10^{4}	6.77	0.53	0.6	0.6	g
G12.03-0.04	$0.7(3)$	$110.61(5)$	$3.96(9)$	2.41	6.69	5.4×10^{4}	9.48	0.58	1.4	1.2	g
W33-Met	$6.9(7)$	$35.43(3)$	$6.44(0)$	4.89	3.78	5.0×10^{4}	19.27	1.2	15.7	14.0	g
	$1.1(2)$	$48.56(1)$	$7.62(6)$	4.2	4.53	7.2×10^{4}	8.61	0.41	1.5	1.4	
M17(3)	$9.1(3)$	$19.98(6)$	$5.41(0)$	4.12	4.42	1.8×10^{6}	32.58	0.69	20.1	18.0	e
G20.24+0.07	$1.6(2)$	$71.06(4)$	$4.39(8)$	4.35	4.77	9.7×10^{3}	6.65	1.35	2.0	1.8	a
MMI-117	$3.4(9)$	$109.22(3)$	$6.20(4)$	3.83	6.32	1.2×10^{5}	11.64	1.1	5.7	5.0	c
G28.85+0.50	$1.4(0)$	$85.13(2)$	$4.42(6)$	4.68	5.2	8.2×10^{3}	6.9	0.92	1.4	1.3	e
18416-0420	$2.1(2)$	$47.61(3)$	$4.31(8)$	5.83	3.26	1.1×10^{5}	8.28	1.11	2.2	2.0	c
	$1.5(7)$	$84.78(5)$	$3.94(3)$	4.65	5.17	2.8×10^{5}	6.3	1.59	1.9	1.7	a
G29.86-0.05	$4.9(7)$	$99.89(3)$	$5.98(3)$	2.24	6.67	1.1×10^{6}	18.77	0.72	8.3	7.5	c
G30.8-0.1	$3.6(8)$	$95.93(4)$	$9.04(0)$	4.55	5.99	1.8×10^{5}	14.82	0.71	8.2	7.3	$\mathrm{~g}, \mathrm{a}$
	$1.3(9)$	$115.63(0)$	$1.95(7)$	4.14			8.46	0.55	0.5	0.5	c
G35.19-0.74	$4.5(9)$	$33.88(3)$	$4.92(2)$	6.75	2.31	2.2×10^{4}	13.24	1.34	6.8	6.1	g
G39.10+0.48	$1.2(4)$	$22.96(1)$	$3.10(0)$	7.36	1.55	0.6×10^{3}	6.65	0.84	0.9	0.8	e, g
G35.20-1.73	$4.2(6)$	$41.99(4)$	$5.59(8)$	6.41	2.82	2.1×10^{5}	13.83	1.04	6.5	5.8	f
W48	$3.8(6)$	$42.37(7)$	$6.21(5)$	6.39	2.84	2.2×10^{5}	13.34	0.95	6.2	5.6	$\mathrm{~d}, \mathrm{f}$
19211+1432	$2.0(4)$	$52.32(3)$	$7.51(4)$	6.5	4.85	6.4×10^{3}	11.96	0.47	3.1	2.8	c, e
	$0.5(5)$	$63.10(1)$	$4.83(4)$	6.19			7.01	0.26	0.5	0.4	
G49.49-0.37	$5.2(5)$	$50.31(9)$	$6.08(8)$	6.56	4.37	5.9×10^{5}	15.62	1.14	9.7	8.6	g
ON1	$7.6(0)$	$60.61(9)$	$6.90(8)$	6.26			28.42	0.66	19.0	17.0	g
NGC7538S	$2.5(3)$	$68.13(2)$	$5.20(8)$	6.05			13.14	0.53	2.8	2.5	g
	$4.3(3)$	$11.13(4)$	$4.11(5)$	8.17	1.14	5.3×10^{3}	11.9	1.63	5.8	5.2	e

a: wings, b: red wing, c: blue wing, d: red shoulder; e: red asymmetry, f: blue asymmetry, g: flat top, h: two or three components.

Figure 4 presents a plot of bolometric luminosity $L_{\text {bol }}$ vs. ${ }^{13} \mathrm{CO}$ line widths for the 55 sources. The linear fit gives: $\log \left(L_{\mathrm{bol}} / L_{\odot}\right)=2.5 \log \left(\mathrm{FWHM} / \mathrm{km} \mathrm{s}^{-1}\right)+3.2$; the correlation coefficient $r=$ 0.52 . From Col.(4) of Table 2, we can see that almost all the ${ }^{13} \mathrm{CO}$ lines, except for one component from the source G32.74-0.07, have line widths larger than $1.3 \mathrm{~km} \mathrm{~s}^{-1}$, which is the typical line width for low-mass sources according to Myers et al. (1983). Also, 57 out of these 79 resolved components have ${ }^{13} \mathrm{CO}$ line widths larger than $3 \mathrm{~km} \mathrm{~s}^{-1}$, indicating possible high-mass star formation regions (Wu et al. 2003). The average line width of ${ }^{13} \mathrm{CO}$ is $4.5 \mathrm{~km} \mathrm{~s}^{-1}$, similar to that detected by Purcell et al. (2009). These results indicate that sources with large line widths tend to form high-mass stars. This trend is consistent with the results of Wang et al. (2009). We also fitted the $\mathrm{C}^{18} \mathrm{O}$ lines of 30 sources and found they have line widths of $4 \mathrm{~km} \mathrm{~s}^{-1}$ on average, smaller than the ${ }^{13} \mathrm{CO}$ lines. The ${ }^{13} \mathrm{CO}$ line antenna temperatures of about one half of these 30 sources are 5.5 times larger than those of the $\mathrm{C}^{18} \mathrm{O}$ lines, and about 75% of the integrated intensities of the ${ }^{13} \mathrm{CO}$ lines are 5 times larger than those of the $\mathrm{C}^{18} \mathrm{O}$ lines. However, the center velocities of the $\mathrm{C}^{18} \mathrm{O}$ lines match the ${ }^{13} \mathrm{CO}$ lines very well, suggesting that the ${ }^{13} \mathrm{CO}$ emissions and the $\mathrm{C}^{18} \mathrm{O}$ emissions may be from the same region in the cloud.

3.3 Mapping Results and Discussion

Two sources, IRAS 06117+1350 and IRAS 07299-1651, were mapped. Figure 5 presents the contours of the integrated intensities of ${ }^{13} \mathrm{CO}$ lines. IRAS $06117+1350$ has two cores and we label them as $06117+1350-$ SE and $06117+1350-$ NW. One core was detected in IRAS $07299-1651$. The posi-

Fig. 4 Bolometric luminosity (L_{bol}) versus ${ }^{13} \mathrm{CO}$ line width. The linear fit of L_{bol} and FWHM is: $\log \left(L_{\mathrm{bol}} / L_{\odot}\right)=2.5 \log \left(\mathrm{FWHM} / \mathrm{km} \mathrm{s}^{-1}\right)+3.2$; the correlation coefficient $r=0.52$.

Fig. 5 Contours of the integrated intensities of ${ }^{13} \mathrm{CO}$ lines. Left: IRAS $06117+1350$, Right: IRAS 07299-1651. The positions of IRAS sources are marked with " + " and the MSX sources are shown as triangles.
tions of the IRAS sources are marked with "+" and the Midcourse Space Experiment (MSX) sources are shown as triangles.

We calculated the masses of the cores under the LTE assumption. We also calculated the virial mass using the equation from Ungerechts et al. (2000). The physical results of these cores are listed in Table 3. The two cores in IRAS $06117+1350$ have a virial mass smaller than the core mass, indicating they are stable and the gas motions are gravitationally bound. Specifically, all of our cores are far away from UC Hir regions. No Spitzer/IRAS data are available for the mapped sources. The core in IRAS 07299-1651 has one IRAS source and three MSX sources. The northwest core of IRAS $06117+1350$ is far away from any IRAS source but is associated with one MSX source about

Table 3 Physical Parameters of the ${ }^{13} \mathrm{CO}$ Molecular Cores

Name	$\begin{gathered} \alpha(\mathrm{B} 1950) \\ (\mathrm{h} \mathrm{~m} \mathrm{~s}) \end{gathered}$	$\begin{gathered} \delta(\mathrm{B} 1950) \\ (0 \prime \prime \prime \prime) \end{gathered}$	$\begin{gathered} V_{\mathrm{LSR}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { FWHM } \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\underset{(\mathrm{kpc})}{\mathrm{D}}$	$\begin{gathered} T_{\mathrm{ex}} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} R \\ (\mathrm{pc}) \end{gathered}$	$\begin{gathered} N\left(\mathrm{H}_{2}\right) \\ \left(10^{22} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{aligned} & M_{\text {core }} \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{gathered} M_{\mathrm{vir}} \\ \left(M_{\odot}\right) \end{gathered}$
06117+1350-SE	061146.4	+13 5032.7	16.48(2)	3.34(9)	3.86	18.47	1.45	2.1	4.0×10^{3}	3.4×10^{3}
06117+1350-NW	061146.4	+135032.7	16.68(3)	2.95(7)	3.86	17.29	1.42	2.0	3.6×10^{3}	2.6×10^{3}
07299-1651	072955.0	-165147.2	16.50(3)	2.89(3)	1.62	15.04	0.79	2.2	1.2×10^{3}	1.4×10^{3}

0.5^{\prime} from the ${ }^{13} \mathrm{CO}$ emission peak. Since no 6 cm emissions are associated with these two cores, they can be identified as HMPOs or UC Hir precursors (e.g. Wu et al. 2006 and references therein). The southeast core of IRAS $06117+1350$ is separated from any IRAS source and MSX source, indicating an evolutionary stage earlier than pre-UC Hir.

4 SUMMARY

A survey of CO and its isotopes at the locations traced by methanol masers was performed. Fiftyfive sources are further studied. They all have $J=1-0$ emissions of ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$, but only 60% of them have significant $\mathrm{C}^{18} \mathrm{O}$ emissions. No differences in either the CO detection rate or the high velocity gas detection rate were found between Class I and Class II methanol maser sources. Fifty of these 55 sources are associated with luminous IRAS sources ($L_{\text {bol }}>10^{3} L_{\odot}$). The relationship between the bolometric luminosity of the associated IRAS sources and ${ }^{13} \mathrm{CO}$ line widths can be described well as: $\log \left(L_{\mathrm{bol}} / L_{\odot}\right)=2.5 \log \left(\mathrm{FWHM} / \mathrm{km} \mathrm{s}^{-1}\right)+3.2$. About three quarters of the resolved components have ${ }^{13} \mathrm{CO}$ line widths much larger than $3 \mathrm{~km} \mathrm{~s}^{-1}$. These results show that molecular cores with large line widths tend to form high-mass stellar objects. In 30 sources, ${ }^{13} \mathrm{CO}$ lines have larger line widths and antenna temperatures than $\mathrm{C}^{18} \mathrm{O}$ lines. However, the center velocities of $\mathrm{C}^{18} \mathrm{O}$ lines match those of ${ }^{13} \mathrm{CO}$ lines very well, suggesting that ${ }^{13} \mathrm{CO}$ emissions and $\mathrm{C}^{18} \mathrm{O}$ emissions may be from the same region in the cloud.

Two cores are detected in IRAS $06117+1350$ and one core in IRAS 07299-1651. The two cores in IRAS $06117+1350$ have a virial mass less than the core mass, but the core in IRAS 07299-1651 has a virial mass larger than the core mass. The core in IRAS 07299-1651 and the northwest core of the source IRAS $06117+1350$ may be pre-UC Hir or HMPOs and the southeast core of IRAS $06117+1350$ seems to be at an earlier evolutionary stage than the pre-UC Hir phase.

Acknowledgements We are grateful to all the staff of Qinghai station of PMO for their assistance during the observations. N. C. Sun and Y. A. Mao also deserve our thanks for their help and discussions. This project is supported by the National Natural Science Foundation of China (Grant Nos. 10733030 and 10873019).

References

Bachiller, R., Menten, K. M., Gómez-González, J., \& Barcia, A. 1990, A\&A, 240, 116
Blaszkiewicz, L., \& Kus, A. J. 2004, A\&A, 413, 233
Casoli, F., Dupraz, C., Gerin, M., Combes, F., \& Boulanger, F. 1986, A\&A, 169, 281
Caswell, J. L., Gardner, F. F., Norris, R. P., et al. 1993, MNRAS, 260, 425
Garden, R. P., Hayashi, M., Gatley, I., Hasegawa, T., \& Kaifu, N. 1991, ApJ, 374, 540
Guilloteau, S., \& Lucas, R. 2000, in ASP Conf. Ser. 217, Imaging at Radio through Submillimeter Wavelengths, eds. J. G. Mangum, \& S. Radford, 299
Haschick, A. D., \& Baan, W. A. 1989, ApJ, 339, 949
Haschick, A. D., Menten, K. M., \& Baan, W. A. 1990, ApJ, 354, 556
Kalenskii, S.V., Liljeström, T., Val'tts, I. E., Vasil'kov, V. I., Slysh, V. I., \& Urpo, S. 1994, A\&AS, 103, 129

Minier, V., Ellingsen, S. P., Norris, R. P., \& Booth, R. S. 2003, A\&A, 403, 1095
Myers, P. C., Linke, R. A., \& Benson, P. J. 1983, ApJ, 264, 517
Plume, R., Jaffe, D. T., \& Evans, N. J. II. 1992, ApJS, 78, 505
Purcell, C. R., Longmore, S. N., Burton, M. G., et al. 2009, MNRAS, 394, 323
Shu, F. H., Adams, F. C., \& Lizano, S. 1987, ARA\&A, 25, 23
Slysh, V. I., Kalenskii, S. V., Val'tts, I. E., \& Otrupcek, R. 1994, MNRAS, 268, 464
Slysh, V. I., Val'tts, I. E., Kalenskii, S. V., et al. 1999, A\&AS, 134, 115
Sobolev, A. M., et al. 2006, arxiv:astro-ph/0601260
Szymczak, M., Hrynek, G., \& Kus, A. J. 2000, A\&AS, 143, 269
Szymczak, M., Kus, A. J., Hrynek, G., Kepa, A., \& Pazderski, E. 2002, A\&A, 392, 277
Ungerechts, H., Umbanhowar, P., \& Thaddeus, P. 2000, ApJ, 537, 221
Val'tts, I. E., \& Condon, G. M. 2007, Astronomy reports, 51, 519
Wang, K., Wu, Y., Ran, L., Yu, W., \& Miller, M. 2009, A\&A, 507, 369
Wood, D. O. S., \& Churchwell, E. 1989, ApJ, 340, 265
Wu, Y., Wu, J., \& Wang, J. 2003, Chinese Physics Letters, 20, 1409
Wu, Y., Wei, Y., Zhao, M., Shi, Y., Yu, W., Qin, S., \& Huang, M. 2004, A\&A, 426, 503
Wu, Y., Zhang, Q., Yu, W., Miller, M., Mao, R., Sun, K., \& Wang, Y. 2006, A\&A, 450, 607

[^0]: * Supported by the National Natural Science Foundation of China.

