## Brief overview of periodic methanol masers

#### Johan van der Walt

Centre for Space Research, North-West University, Potchefstroom Campus, Potchefstroom, South Africa

19 March 2015

- Sharmila Goedhart
- Fanie van den Heever (see poster)
- Jabulani Maswanganye (talk)
- Ruby van Rooyen

문 문 문

# The broader context: High mass star formation and methanol masers

- Numerous observational studies indicate that the bright 6.7 GHz and 12.2 GHz masers are exclusively associated with very young high mass stars. (Eg. Ellingsen 2006; Breen et al. 2013; de Villiers et al. 2014)
- Methanol Multibeam Survey detected 972 6.7 GHz methanol maser sources in the Galaxy (Shari Breen). All high mass star forming regions.
- Methanol masers may be very useful indicators of the evolutionary state of the associated system:
  - Strong association between presence of 6.7 GHz masers and outflows (de Villiers et al. 2014)
  - Relatively small percentage of UCHII regions show associated 6.7 GHz maser emission. Pre-UCHII phase? (Codella & Moscadelli 2004)
- Most 6.7 GHz and 12.2 GHz masers show some degree of variability. Some show periodic "flaring" behaviour.

## Reported periodic/regular varying masers: 16 known

| Name           | Methanol     | OH           | Other   | Period | Authors            |
|----------------|--------------|--------------|---------|--------|--------------------|
|                |              |              |         | (days) |                    |
| G9.62+0.20E    | √            | $\checkmark$ |         | 243    | Goedhart et al.    |
| G12.89+0.49    | $\checkmark$ |              |         | 29.5   | Goedhart et al.    |
| G22.357+0.066  | $\checkmark$ |              |         | 179    | Szymczak et al.    |
| G22.411+0.105  | $\checkmark$ |              |         | 245    | Szymczak et al.    |
| G37.55+0.20    | $\checkmark$ |              | $H_2CO$ | 237    | Araya et al.       |
|                |              | 6.035        |         | ?      | Al-Marzouk et al   |
| G45.473+0.134  | $\checkmark$ |              |         | 195.7  | Szymczak et al.    |
| G73.060+1.80   | $\checkmark$ |              |         | 160    | Szymczak et al.    |
| G75.76+0.34    | $\checkmark$ |              |         | 119.9  | Szymczak et al.    |
| IRAS22198+6336 | $\checkmark$ |              |         | 34.6   | Fujisawa et al.    |
| G188.95+0.89   | $\checkmark$ |              |         | 404    | Goedhart et al.    |
| G328.24-0.55   | $\checkmark$ |              |         | 220    | Goedhart et al.    |
| G331.13-0.24   | $\checkmark$ |              |         | 504    | Goedhart et al.    |
| G338.93-0.06   | $\checkmark$ |              |         | 133    | Goedhart et al.    |
| G339.62-0.12   | $\checkmark$ |              |         | 201    | Goedhart et al.    |
| G339.986-0.425 | $\checkmark$ |              |         | 249    | Maswanganye et al. |
| G358.460-0.391 | $\checkmark$ |              |         | 220    | Maswanganye et al. |

- Periodic masers probe "something" on the AU scale. (Similar to Gabriele Surcis's use of masers to probe magnetic fields)
- Ask different questions within the context of high mass star formation

#### Examples of methanol maser light curves



Johan van der Walt Brief overview of periodic methanol masers

• 3 >

Some questions about the periodic masers:

- What is the underlying driving mechanism for the periodicity? Stellar pulsations, binary system, etc?
- What is affected by the driving mechanism, the masing region or background?
- Are there different "types" of periodic/regular varying masers flare profiles?
- What can we learn about the star formation environment from these masers?
- Can we see the same behaviour in other masing species and what does it mean?

## Variability of masers

Basic relation:

$$I_m(t) = I_0(t) e^{-\tau_m(t)}$$

| Proposed Mechanism                       | $\tau_m(t)$  | $I_0(t)$     |
|------------------------------------------|--------------|--------------|
| Orbiting circumstellar dust features     | $\checkmark$ |              |
| Spiral density waves                     | $\checkmark$ |              |
| Stellar pulsations                       | $\checkmark$ | $\checkmark$ |
| Circumstellar matter in accreting binary | $\checkmark$ |              |
| Precessing jet                           | $\checkmark$ | ?            |
| Colliding-wind Binary                    | √?!          | $\checkmark$ |

- The Polish group concludes that the periodic masers are indicative of massive binary systems.
- No consensus on whether periodicity is due to changes in amplification or background.
- We need to understand what's driving the periodicity and what is affected in order to learn what the periodic masers tell us.

- Two reasonable statements can be made:
  - Flare profile **must** carry information about underlying physical mechanism think of optical light curves for pulsating stars or of binary systems.
  - The same mechanism must be at work in sources with similar flare profiles
- Make sense to first consider sources with similar flare profiles.



- <u>At least</u> four sources with similar flare profiles:
  - G9.62+0.20E: 6.7 (A-methanol) & 12.2 (E-methanol), OH
  - G22.357+0.066: 6.7 GHz
  - G37.55+0.20: 6.7 GHz + H<sub>2</sub>CO
  - G45.473+0.134: 6.7 GHz (new)



- Two masers are 2000 AU apart in projection (Araya et al. 2010)
- $CH_3OH$  and  $H_2CO$  masers show the same flare profile!
- Should the flaring be due to pumping  $\Rightarrow$

$$\left[\frac{g_u}{g_l}x_l(t) - x_u(t)\right]_{\rm CH_3OH} - \left[\frac{g_u}{g_l}x_l(t) - x_u(t)\right]_{\rm H_2CO} = \text{constant}$$

- Different molecules with different pump cycles should behave in a very specific way. Very strict requirement.
- $\bullet\,$  Even if both masers are radiatively pumped, how should  $T_d(t)$  as well as the IR spectra be tuned to achieve such behaviour?

## G9.62+0.20E and similar sources

 Similar conclusion can be reached for G9.62+0.20E: Three transitions (6.7, 12.2 & 107 GHz) for two types of molecules (A- and E-methanol) show the same flare profile.



Same behaviour seen in 12.2 GHz masers in G188.95+0.89. Again two different masing molecules with the same time dependence.



Common characteristic in all these sources is the shape of the decay.

### Proposed explanation (see poster by Fanie van den Heever)



$$dn_e/dt = -\alpha n_e^2 + [\Gamma_\star + \Gamma_p(t)]n_H$$

$$dn_e/dt = -\alpha n_e^2 + \alpha n_{e,\star}^2$$

$$I_{\nu}(t) \propto n_{e,\star}^2 \left[ \frac{1 + u_0 \tanh(\alpha n_{e,\star} t)}{u_0 + \tanh(\alpha n_{e,\star} t)} \right]^{-2}$$

> < 문 > < 문 >

#### Fitting the decay of the flares



Johan van der Walt Brief overview of periodic methanol masers

э

• 3 >

#### Fitting the decay of the most recent flares in G9.62+0.20E



• 3 >

- The known number of periodic methanol masers has more than doubled over the last couple of years.
- The periodic masers reveal the presence of time dependent phenomena associated with very young massive stars that would not have been detected otherwise.
- Some masers definitely have the same type of flare profile which implies the same underlying mechanism.
- The decay part of the flares for four sources plus the long term decay seen in G188.95+0.89 can be described very well in terms of the recombination of a thermal hydrogen plasma. Single simple mechanism and requires NO fine tuning.
- It is not clear yet to what extent the periodic behaviour in some of the sources can be ascribed to changes in the pumping of the masers.