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Abstract. We present a method to extract the phase lag from
time series of calibrated OH 1612 MHz spectra. The phase lag
(7o) is the difference in travel time between emission from the
front and back of the circumstellar shell.

The phase lag 7, is determined from independent phase lag
estimates 7;; between the flux curves of various pairs of spectral
channels under the assumptions of spherical symmetry and satu-
rated masering. Regardless of how we estimate the interchannel
lags 7;;, we derive a weighting scheme to combine them, provided
we know their variances. Under simplifying conditions we can
analyze this problem algebraically. This yields insight in the
structure of the problem and in the limitations for monitor
programs to measure the phase lag.

In practice we deal with observations that do not allow these
simplifications and we use simulations to establish the weighting
scheme. The implementation of our algorithm is described and is
presented as a block diagram. A specific form of the interchannel
lag estimator is described and we discuss how the parameters for
the simulations are obtained. Finally, new data from the
Dwingeloo telescope are merged with historic data to give new
values for the phase lags of the shells around OH/IR stars from
the Dwingeloo sample (Herman and Habing, 1985a).

Under several assumptions we combine the value of the phase
lag with angular radii from the literature to derive distances to
several stars. These distances slightly differ from earlier ones,
based on the same method, and have more reliable errors on
them. We present the bolometric luminosities for the stars that
have accurate distances.

Key words: masers — numerical methods — stars: OH/IR - stars:
circumstellar matter — distances

1. Introduction
1.1. OH/IR stars

The two-peaked galactic masers observed in the satellite line of
OH at 1612 MHz originate in circumstellar shells around highly
evolved stars (Goldreich and Scoville, 1976; Reid et al., 1977;
Olnon, 1977). According to this model the characteristic double
peaked spectrum is maser emission from the steadily outflowing
OH, amplified with greatest efficiency in the directions of maxi-
mum coherent path length. Hence the blue- and redshifted peaks
are the emission from the near and far cones of the shell.
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Apart from interstellar UV, responsible for the dissociation of
water molecules into OH, the phenomenon is believed to be
dominated by the physical conditions of the star. A large mass
loss rate is required, not only to provide enough OH, but also to
form a thick dust shell. This is essential because it is believed that
the population inversion of the OH molecules is pumped by IR
emission (Elitzur et al., 1976) that is provided by the dust. The
dust absorbs the radiation from the star and reradiates it in the
far IR. Indeed, all double peaked OH masers coincide with an
IR source that quite often is optically thick. Then no optical
counterpart is seen and these objects are known as OH/IR stars
(see Herman and Habing, 1985a, or Jones, 1986, for a review).

Most of these stars are variable. In fact, Mira’s sometimes
show the effects described above and it is quite clear that OH/IR
stars and Mira’s arc closely related, the Mira’s having a dust shell
that does not yet obscure the star. As the output of the star varies,
so will the IR from the dust shell. Indeed IR variability is
observed for several sources. This implies that the maser emis-
sion, if present, will also vary.

An important observational fact is that the masers and the
infrared emission show variations with the same characteristics.
For several objects it is reported that the variability follows the
IR variations accurately (Harvey et al., 1974; Engels et al., 1983).
This clue tells us that the masers are saturated, i.e. that all
inverted OH molecules are used in the maser process. On a
macroscopic scale this means that the maser will follow the IR
input linearly.

If we monitor the OH flux spectrum accurately we can
measure phase lags, i.e. the time shifts between the flux curves
from different parts of the OH spectrum. To the observer the
blueshifted spectral peak from the front has its maximum before
the redshifted peak from the back (see Fig. 1), because the shell is
several tens of lightdays across. This back to front phase lag will
be denoted by 7, and is measured in days. This difference yields
the distance between parts of the shell if we multiply its value by
the speed of light. The phase lag has been measured for several
bright 1612 MHz masers (Schultz et al., 1978; Jewell et al., 1980;
Herman and Habing, 1985b). Typical values are 25 lightdays, or
610'*m, in good agreement with calculations for the chemical
composition of outflowing material (Netzer and Knapp, 1987).

This simple model predicts that observations with sufficient
resolution reveal rings of emission with increasing radius close to
the stellar velocity. Indeed this has been found (Booth et al., 1981;
Herman et al,, 1985; Diamond et al., 1985 and others). These
rings are usually not complete, but they do show that the
emission originates in a shell. Large departures from the shell
model have been found in sources with an irregular spectrum (e.g.
Chapman, 1988).

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1990A%26A...239..193V&amp;db_key=AST

FTI9DARA © Z 2397 “I93V

194

OH-shell

observer wg——m—

blueshitted redshitted

ST

To

!
I
!
|
i
I
I
|
1

N

time

velocity

Fig. 1. Schematic view of how the phase lag appears to the observer. The
emission originates in the circumstellar shell and the characteristic two-
peaked spectrum is observed through the Doppler shift. The spectrum
varies in time

Extending the assumptions of this model, the phase lag has
been used to determine the distances to some of these stars, by
comparing the phase lag to the angular size.

1.2. The outline of this paper

The multichannel phase lag estimation problem is treated in
Sects. 2, 3 and 4. Under simplifying assumptions we derive an
analytical solution of the estimation problem. This analysis,
although valid only under unrealistic circumstances, yields in-
sight in the problems involved in measuring phase lags. In the
realistic case simulations are used to support the algorithm.
Phase lags of bright OH stars were published by Herman et
al. (1985). Using observations from the same monitor program,
augmented by recent observations, we use our algorithm to
recalculate the phase lags published by them (Sect. 5). For some
stars we get values different by more than the error assigned by
Herman. Although we added data obtained since 1983 we do not
claim a greater accuracy, because we believe that the errors in
Herman’s work are too optimistic, as they do not reflect the
phase lag uncertainties from the noise on the data. We check the
assumptions under which the numerical methods are valid.
Phase lags were used (Herman and Habing, 1985a, and by
Diamond, 1985) to determine stellar distances. So we use the
same assumptions as they did to recalculate the distances. Recent
work by several authors warrants a critical look at the assump-

tions. Finally we discuss briefly the astronomical implications of
these new distances.

“Phase lag distances” were intensively used since 1983 to
study, among other things, the theory of stellar evolution (van
der Veen and Habing, 1988), the processes in circumstellar shells
(Heske et al., 1989; Netzer and Knapp, 1987) and the interstellar
medium (Diamond et al., 1988). In addition, several new pro-
grams to measure distances to other OH/IR stars have been
started recently. For instance, observations to measure the dis-
tance to the Galactic centre, by measuring the distance to several
OH/IR stars close to SgrA, were started by one of us (H.J.v.L.).

All this justifies a critical look at the method of determining
the phase lag from OH flux curves. Though the problems with
the underlying assumptions are hard to tackle, we can improve
the internal error estimate which we believe to be wrong in the
original work (Herman, 1983). The new projects mentioned
above are another reason for the work presented here; many of
them require the reduction of multichannel spectral data.

2. The estimation problem
2.1. Assumptions

Our approach relies on two assumptions, of which the con-
sistency can be checked internally. First we assume saturated
masering, in order to assure identical flux curves in all channels of
the spectral profile. Secondly we assume spherical symmetry. It is
not completely clear from an astrophysical point of view that this
is valid (see Sect. 6). The assumption is important, because then
the phase lag changes linearily through the profile. In principle
we can check both these assumptions when we deal with real
data.

The observed data g;(t,) are calibrated velocity spectra, ob-
served at irregular time instants ¢, (n=1,. .., N). The spectrum
has I velocity channels v; (i=1,...,1), where i=1 and i=1I
correspond to greatest and smallest velocity, respectively. See
Fig. 2 for a typical flux curves of two stars from the Dwingeloo
sample. Since we assume a saturated maser, the channels have a
common flux curve ¢(t) with individual phase lags 7; and with
individual factors u; representing the spectral profile:

gi(tn)=u;c(t,— ;). )

Because of the assumed spherical symmetry the phase lag is a
linear function of v;,

v;— U,

;= To, 2)

V=0

where 7, is the star’s overall lag, i.e. the lag between the outer
channels i=1 and i=1.

In view of the large dynamic flux range it is convenient to use
a log flux scale. Including the errors in log flux we get

Siltn)=m+5(t,— 1)+ pi (1), (©)

where f=1log(g), m=log(u) and s=1log(c). The p,(t,) represent the
observational errors in the log flux domain. Since the corres-
ponding errors in the flux domain are often caused by calibration
defects, with an approximately constant ratio o,/g, the log flux
errors p;(t,) will all be of the same order of magnitude for
different ¢,, but we may expect slightly different error variances
between different spectral channels (see Sect. 3).
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Fig. 2. Typical example of log flux curves. Shown are the variations of the outer peaks of OH 127.9+0.0 and OH 42.3—0.1, observed with the DRT

Substitution of Eq. (2) into Eq. (3) gives
v;— 0y i=1,...,1,

T0>+pi(tn)a ne1 N 4

I 1

ﬁ(tn) =m;+s <tn -

Our problem is to produce from the data (4) an unbiased estimate
1, of the overall lag 7, and to specify its estimation error. To this
end we adopt a two step procedure. First, we estimate the lags of
P pairs of channels. Second, we combine the P lag estimates
to obtain an estimate of the overall lag t,. The two steps
are discussed in Sects. 2.2 and 2.3. In Sect. 2.4 we argue that
P=(I-1)is a sufficient number of pairs.

2.2. Interchannel lag estimation

Consider one channelpair, consisting of channels i and j. Their
lag (“interchannel lag” or i.c. lag) follows from Eq. (2):
v;—;

J —
7= To=XijTo- %)
vy—v;

Various methods exist to obtain an estimate ;; of 7;; (e.g. Gaskell
and Peterson, 1987; Edelson and Krolik, 1988). Since our argu-
ments hold for any of these methods there is no need to define a
specific one at this point. (The i.c. lag estimator we have actually
used is described in Sect. 4.2). The only assumption is that we
produce an unbiased estimate. Thus, if the estimate differs from

the true value by an error ¢;,

fij=xij‘[0+8ij, (6)

we require that ¢; has zero mean value. Applying the ic. lag
estimation to P pairs of channels we get P equations of type (6); in
vector notation

t=x14+¢, (7)

where %, x and ¢ are column vectors of length P.

2.3. Weighted combination

The estimates of Eq. (7) are linearly combined with weights w;; to
obtain an estimate of the overall lag:

Y owyt=wTt ®)

P pairs

where w is the (column) vector of weights, where superscript T
denotes transposition and where w'# is the inner product of w
and . The weights w depend on the variances and covariances of
the i.c. estimation errors ¢;;. If these (co)variances are known they
can be represented by a P x P covariance matrix Q=E(e-¢g"),
where E( ) denotes expectation. The weights are then given by

1

W=———
xTQ x

0 lx. o)

Equations (8) and (9) represent the minimum variance, linear,
unbiased estimate of 7, (Kendall and Stuart, 1973). Application
of (8) and (9) to (7) gives

xTQ e
f0=10+xTQ‘T1:=10+80. (10)
Thus, the estimate f, is unbiased. [E(go)=0 since E(¢)=0.]
Further, it is readily checked that the (minimized) error variance

equals

var(go) =—

}W. (11)

2.4. The number of interchannel lag estimates
2.4.1. Redundant channelpairs

We shall now discuss the number of channelpairs, P, to be used
in Eq. (8). The maximum number is 1(I — 1), but it is question-
able whether I channels can produce as many as 3I(I—1)
independent lag estimates. If some of the equations of the set (7)
turn out to be linear combinations of the others, they are re-
dundant since they provide no new information on 7,. The effort
spent in estimating their lags is superfluous. In addition, they lead
to a singular matrix @, which leaves Q™! undefined. Thus,
redundant channelpairs must be avoided. Light is shed on this
problem by deriving analytical expressions under ideal condi-
tions for the (co)variances of the interchannel errors ¢;; in Eq. (7),
i.e. by deriving expressions for the elements of matrix Q.
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2.4.2. Matrix Q under ideal conditions

The elements of Q can be calculated if we allow some simplifica-
tion of the observed data [Eq. (3)]. We omit the offsets m; and
make the following assumptions.

— The observation times are equispaced, t,=nA, with spa-
cing A small compared to the time scale of variability of the log
flux curve:
Jit))=s(nA—1;)+pi(t,). (12)
The observations span a time interval NA.

— The errors p;(t,) have an rms value g;, dependent on. the
spectral channel i, but independent of the observation time ¢,.

— The errors p;(t,) are uncorrelated and are small compared
to the log flux curve, i.e. 6; <(Spax — Smin)-

Under these conditions we derive in Appendix A the follow-
ing results for var(e;) (the diagonal elements of Q) and for
covar(g;;, &;) (the off diagonal elements). For the variances we get:

var (g;;) = o; + o, (13)
where
1 NA -1
o;=0? (—J ($(1))? dt) . (14)
Alo

Expressions (13) and (14) are intuitively satisfying. The i.c. lag
error decreases when o; decreases and when the number of
observations increases. Flux curves with steep ascents and/or
descents [large values of $(t)] perform better than curves with
gradual slopes. Equations (13) and (14) can be rewritten as a
simple rule of thumb for the accuracy of a two channel lag
estimate (Sect. 3.1). Equation (13) is a special case of

covar (g;;6,) = 0y 0; + 630, — 00, — 6 (15)
where
d;;=1 when i=j, 6;;=0 when i#j.

Expression (15) implies that the i.c. lag errors are indeed
correlated in a way that makes many of the maximum number of
11(I—1) lag estimates redundant. It can be shown from (15) that
matrix Q is of rank (I —1). Thus we find - not surprisingly — that
the I spectral channels provide a maximum of (I — 1) independent
measurements that can be used to estimate £,. The situation can
be explained in terms of closure errors. Suppose, for example,
that we estimate the lags between 3 channels i, j and k. The true
lag values satisfy by their definition (5) the relation 7y, —1;;—1j
=0. A similar relation, however, turns out to hold for their
estimates: £, —?;;—1; =0. This follows from Eq. (15) by showing
that the closure error has zero variance:

Var (ggos) = var (€ —&;;— &) =0. (16)

A

Hence only two of the three estimates £, £,; and ¢
redundant.

 are non-

2.4.3. Selection of (I —1) channelpairs

As shown above we may (and must) limit the number of inter-
channel lag estimates to P=(I—1). One can prove that it does
not matter which of the I channels are used to form pairs,
provided that every channel is used at least once. We shall
proceed, somewhat arbitrarily, by selecting one channel as a

reference channel [we take the channel with maximum value u;
in Eq. (1)] and by forming (I—1) pairs between the reference
channel and each of the others.

2.5. Explicit expressions

We return briefly to the algorithm of Sects. 2.2 and 2.3. Ex-
pression (7) is now a set of (I — 1) equations, and can be rewritten
as

T, =X,To+& i=1,...,1 i#r

17

where r indicates the reference channel. The estimates must be
weighted in the manner of Eq. (8), which requires computation of
the weights w, which in turn requires inversion of an (I —1)x
(I—1) covariance matrix Q (Eq. 9). Under the ideal conditions
(12) the elements of Q are given by Egs. (13) and (14) and it
appears that @ can be inverted algebraically. As a result, we
derive in Appendix B the following explicit expressions for the
estimate of the overall lag and for its error variance:

Uxt_UxU:/U (18)
fo= Uxx—Uf/U
(80) : (19)
var(gg)=———,
" UL-UZU
where
1
U= -,
i;1 &;
I x. I 52
Ux= l, Uxxz _""
i=zl %; i=Zl %;
i%r itr
LI ! x,.7,;
v=Yy - U.,=Y 2" 20
i=21 o i-zl o (20)
itr i#r

2.6. Implementation by simulation

Sections 2.4.2, 2.4.3 and 2.5 are valid only under the simplifying
restrictions (12), which are not satisfied by our observational
data. For example, Eq. (14) looses its quantitative significance
when the conditions are unfulfilled and cannot be used to com-
pute the various quantities U that are required in the expressions
for £, and var(e,) [Eqgs. (18) and (19)].

On the other hand, it is reasonable (and practical!) to assume
that the number of independent channel pairs remains (I —1)
under realistic conditions, and that we can use Egs. (18), (19) and
(20) to solve the problem. We have adopted this approach in the
practical implementation of our algorithm (Sect. 4). At most,
should our assumption fail, we produce an estimate £, with a
somewhat larger than minimum error, but the estimate remains
unbiased [Eq. (10)].

This leaves us with the problem to determine the values of «;.
The problem is solved by simulation. We generate a large num-
ber (M ~ 100) of artificial datasets using the original observation
times t, and using a log flux curve s(¢) and a preliminary estimate
(fo)preiim derived from the observed data. Artificial errors p;(t;),
statistically equivalent to those in the actual observation, are
added to mimic the observed data. From the M sets we estimate
the left hand side of Eq. (13) and we calculate the values of
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Fig. 3. Block diagram of the data reduction
o, - .., 0o Ablock diagram of these steps is presented in Fig, 3.

The a4, . . ., a; are then used in Eq. (20), together with £,; of
the observed data, to obtain the quantities U required for the
final estimate £, (Eq. 18). See the block diagram. They are simi-
larly applied to the M sets of simulated ,; to procedure M
simulated estimates of t,. The variance of this set, var(gg);m, is
the error variance of our estimate.

Finally, the o,,...,a; are substituted into Eq. (19) to
give a second error variance, var(gg)peor» representing the
error expected under the ideal conditions (12). A ratio
var (€9 )sim/Var (&g kneor Significantly greater than 1 indicates a devi-
ation from ideal conditions.

The approach by simulation removes the need to make
simplifying assumptions concerning the observed data or con-
cerning the i.c. lag estimator. Departures from ideal conditions
are automatically taken care of by the simulation.

3. Some considerations for monitor programs
3.1. Extending the analytical approximations

Before we discuss the implementation of the algorithm we derive
some rules of thumb for monitoring programs.

Expressions (13) and (14) give the error on the estimate of the
lag between two channels. This result was derived under several
assumptions (Sect. 2.4.2). Under more realistic conditions we can
use the formulas to derive a lower limit to the error. A numerical

197

value can be obtained by assuming a specific form for s(t) and
evaluating expression (14).

We choose for the log flux variability s(t)=bcos(2n
(t—to)/P). When the observation period NA is larger than the
period P we derive
1 o?+a}>P )

1
Var(Eij) NP <N bz

@n

The errors in the log flux can be replaced by corresponding
errors in the flux, giving

1 ( 1 (ag/g)f+(ag/g)i> p2

var(eu) ~ Ao \N 2

22

where (a,/g) is the relative error in a flux measurement and b is
again the amplitude of the log flux curve.

3.2. The limits set by calibration

It is generally not true that the factors (o,/g) are determined by
the noise in the individual spectra. The values reflect, through
Eq. (21), the relative accuracy with which we can follow the
variations. So the (o,/g) can be limited to an approximately
constant ratio, because the calibration is performed with limited
accuracy. This turns out to be often the case and justifies our
choice to work with the log flux curve (Sect. 2.1).

The calibration defect can have its origin in the total flux
calibration. This may introduce a bias. If the whole spectrum is
scaled wrongly, different parts of the spectrum become corre-
lated. This way the phase lags £;;, and thus £,, will become biased
towards zero. Therefore this bias would yield phase lags too
small and stellar distances too small. In the case a whole sample
of stars is monitored with a single telescope, doing a selfcalibra-
tion of the whole dataset may be a way to cure this (Herman and
Habing, 1985b).

Most often the cross band calibration will limit the accuracy
of the flux measurements. When baseline subtraction is necessary
some channels may become correlated while others get anticor-
related. We may hope that this will not bias the final answer, but
it will limit the relative accuracy for many single dish monitor
programs.

Taking the calibration limits into consideration we can esti-
mate the error on £;; for a particular set of observations. By using
more than one pair of channels we can improve our estimate of
the diameter of the shell. This improvement will be modest, but
important. For OH/IR stars the inner channels are less sensitive
to the phase lag and usually have less signal. Evaluating ex-
pressions (19) and (20) for a typical OH spectrum with a channel
separation of 1 kms™!, we find that the final standard deviation
of £, is a factor of 2 smaller than that on £;; of the outer two
channels.

4. Implementation
4.1. Block diagram

Figure 3 illustrates the procedure as implemented for the
Dwingeloo OH/IR data. The diagram consists of 3 parts.

Main data stream. The main stream consists of (I—1) inter-
channel lag estimates, followed by a weighted combination to
give the desired estimate £, of the observed star. The interchannel
lag estimator is described separately in Sect. 4.2. The weighted
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combination uses Eqgs. (18) and (20) (instead of the original Eq. 8)
and requires its weights in the form of quantities «,, . . ., a;.
Simulation process. The quantities a4, . . ., a; are obtained from
a variance analysis of M (~100) sets of simulated data, as
described in Sect. 2.6. The simulation also provides the variance
of the estimation error, var(g,);n,. A second error variance,
var(€o Jineors 1 produced for diagnostic use (Sect. 2.6). The error
variances are converted to rms errors, oy, and oy,..,, respectively.
Simulator input parameters. In order to get a realistic simulation
of the observed data we must know a number of parameters:
(i) the underlying log flux curve s(t) of the observed star
(Sect. 2.1), (ii) the statistics of the observational errors p;(t,)
(Sect. 2.1), (iii) a preliminary estimate of the star’s overall lag z,.
The computation of these input parameters is briefly described
in Sect. 4.3.

4.2. The interchannel lag estimator

Consider the log flux data in two spectral channels i and j. From
Eq. (3):

.ﬁ(tn)=mi+s(tn_1i) +pi(tn)
Si(t)=m;+s(t,— ;) +p;(t,). (23)

The curves s(t) have a more or less periodic character and the
observations usually span a time interval larger than one period.
The sample raster ¢, is irregularly spaced, but the average sample
distance is fairly small, i.e. 1/20 of a period.

We require an unbiased estimate of the interchannel lag
7,;=1;—1;. Various algorithms can be designed to try and
achieve this goal. We have selected a method consisting of the
following four steps.

Linear interpolation. The discrete data (23) are made continuous
by linear interpolation: adjacent values f(t,) and f(t,,,) are
joined by straight lines. The resulting curves, consisting of
straight line segments, are resampled equidistantly with a sam-
pling distance d, small compared to the expected interchannel
lag 7;;.

Offset removal. The offsets m; and m; are estimated by averaging
and are removed by subtraction. The resulting data are f; (nd) and
fi(nd).

Lag estimation. The lag is estimated by shifting one curve with
respect to the other and by searching for the shift / that minimizes
the sum of squared differences,

Ri=(—n + )" S (find)—f}((n— D))

n=ng

(24)

The initial estimate ;; is given by Id, where [ is the shift that
minimizes expression (24) (n, and n, delimit the common interval
of overlap, taking account of the shift /).

Bias removal. The initial estimate may be biased when the obser-
vation times ¢, are badly positioned with respect to the log flux
curve, or when large gaps t, , ; —t, occur. We calculate the bias by
repeating the previous three steps for noisefree observations,
based on the log flux curve and the preliminary estimate (£)retim»
prepared as input to the simulator (Fig. 3). A plot of Id versus the
true value 7;; is then used to correct for the bias.

4.3. Simulation parameters

The weighted combination of i.c. lag estimates requires weights
ay, ..., o that are obtained from M simulations of the observed

data. So the simulator must be provided with a log flux curve,
with the statistics of p;(t,) and with a preliminary estimate of the
overall phase lag 7,. In addition we must provide the set of
observation times, t,, to the simulator. See Sect. 2.6 and Fig. 3.

The log flux curve is obtained by fitting the following model
to the observed data

s(t)=bcos (2n¢(t)), (25)
where
% when 0<o<f,
o=~
2201—f)+1 when f<e@<l1,
and
p=(t—1t0)/P.

P is the period, ¢, is the phase, b is the amplitude and f is the
asymmetry parameter which equals the risetime over the total
period and thus has a value between 0 and 1. We have used a
nonlinear least squares method for the fitting. Because P and fare
not strictly independent we fitted first with a fixed £, then with a
fixed P and switched back and forth in this way before reaching
the final result. Further we have used the fact that b, P, fand — in
first approximation — ¢, are identical for all channels if the maser
is saturated.

The error variances a,(t,) were measured from the residuals of
the fit from those sections of the observed data where a good fit
was possible. We usually could not use the whole curve to
determine the noise statistics, because systematic departures from
the model were present. It is a known fact that the variations
from Long Period Variables show irregularities. This also implies
that our model does not describe the data extremely accurate, but
this will only have a small influence on the variance in the final
estimate of 7,, but will not introduce any bias.

Finally, a preliminary estimate of 7, was obtained by using
Egs. (18) and (21).

5. Dwingeloo monitor
5.1. Introduction

We now apply the method to data obtained with the Dwingeloo
Radio Telescope (DRT). The sample under consideration is
defined in Herman and Habing (1985b). It consists of 60 bright
OH sources with double peaked spectra (S;4,, >4 Jy) at low
Galactic latitudes and also some Mira’s and Supergiants.

Approximately 100 times the 1612 MHz profile for each star
was observed over a period of 10 years. Unfortunately data were
only recorded for discrete peaks in the spectra (typically 6 peaks
per spectrum), so that we have information from only a small
number of channels.

Calibration of the observations was done against a noise tube
that was calibrated daily during observations against Virgo A.
Also a daily reference measurement of an empty sky was made.
The observed spectra needed baseline fitting before flux measure-
ments could be made. This was sometimes difficult when the OH
spectrum already filled a large fraction of the good quality part of
the pass-band. In some cases the data also suffered from confu-
sion (see Herman and Habing, 1985b, for details).
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Table 1. Parameters of the log flux curves of our sample

Name 10" P Op b oy to gy, f a¢
Jy) (d) (JUL-2440000)

R Aql 4.1 282 21 0.2453 0.0176 5200.5 10.1 0.612 0.038

RR Aq! 79 386 28 0.1369  0.0104  4936.1 223 0.246 0.032

SY Adql 14 349 26 0.1100  0.0066 5198.5 19.2 0.529 0.059

VY Cma No fit possible

PZ Cas Not variable; <0.108

NLM Cyg 349.6 1469 351 0.0353 0.0062 45764 2584 0.262 0.085

Z Cyg 39 261 17 0.1286  0.0085 5157.2 12.1 0.331 0.036

U Ori No fit possible

WX Psc 353 634 23 0.2076  0.0065  4991.2 183 0.354 0.021

WX Ser 20 413 34 0.1531 0.0119 5200.2 20.3 0.477 0.057

IK Tau 44 461 16 0.3316  0.0101 5088.4 8.8 0438 0.018

RS Vir 6.2 355 15 0.1630  0.0062 5064.0 11.7 0.234 0.024

3594—1.3 44 2835 282 0.1454  0.0168 44224  279.1 0.145 0.134

03-0.2 No fit possible

1.5-0.0 No fit possible

11.5+0.1 17.8 826 131 0.0271 0.0038 5114.0 83.7 0.419 0.082

12.3-0.2 6.7 584 78 0.1320  0.0165 5114.2 434 0.507 0.075

12.8—19 12.0 1024 111 02282  0.0269  4929.3 74.6 0.309 0.040

12.9+0.9 39 1522 142 0.0941 0.0072  4801.1 352 0.852 0.051

13.1+5.0 133 698 65 0.0950  0.0074 48832 40.6 0.580 0.078

157+0.8 No fit possible

16.1-0.3 18.7 2271 132 0.1326  0.0075 5112.8 95.2 0.428 0.034

174-03 9.1 1667 144 02112  0.0142 3914.9 1059 0.222 0.035

17.7-2.0 No fit possible

18.3+04 7.5 782 113 0.0734  0.0107 5134.8 62.0 0.619 0.119

18.5+14 No fit possible
18.8+0.3 Not variable; <0.043

20.2—0.1 7.8 811 170 0.1458 0.0257 5194.6 99.3 0.489 0.098
20.7+0.1 12.6 1672 98 0.1619 0.0084 4841.7 88.0 0.214 0.036
21.5+0.5 23.1 1785 114 0.2094 0.0119 3935.7 65.4 0.358 0.032
25.1-0.3 Not variable; <0.052

26.2—0.6 18.2 1172 94 0.1386 0.0106 4656.1 61.3 0.458 0.063
264—19 16.9 566 55 0.0991 0.0078 4712.4 29.4 0.517 0.066
26.5+0.6 56.1 1589 42 0.2272 0.0046 4764.2 28.9 0.313 0.023
27.3+0.2 325 830 59 0.1272 0.0082 4675.6 49.2 0.215 0.042
28.5-0.0 10.2 621 62 0.1364 0.0120 5005.2 40.0 0.490 0.051
28.7—-0.6 120 669 32 0.1736 0.0069 4768.1 20.5 0.484 0.032
30.1-0.2 129 960 48 0.1583 0.0088 54144 314 0.409 0.040
30.1-0.7 57.6 2013 243 0.0921 0.0113 5301.9 155.0 0.366 0.045

30.7+0.4 Confusion
31.0-0.2 No fit possible
31.0+0.0 No fit possible

32.0-0.5 10.3 1417 108 0.1695  0.0124  5001.0 84.0 0.402 0.060
328-03 27.8 1539 31 0.2473 00042  4706.2 24.0 0410 0.017
35.6—0.3 20.1 840 42 0.1554 00072 51519 29.7 0.346 0.032
369+1.3 4.1 425 35 0.1292  0.0103  5081.2 24.7 0.387 0.056
37.1-0.8 No fit possible

39.7+1.5 73.6 1430 27 0.1606  0.0027  4808.8 199 0.406 0014
39.9-0.0 8.5 778 87 0.1324 00132 51924 69.0 0.404 0.084
42.3-0.1 6.6 2344 445 0.1013 00199  4970.7 3482 0.249 0.065
448-23 21.0 534 24 0.1600  0.0065  5072.3 16.7 0.393 0.030
455+0.1 8.7 697 31 0.1705  0.0070  5001.5 219 0.458 0.029

51.8—-02 No fit possible

53.6—0.2 No fit possible

753—-1.8 6.5 1652 48 0.2884  0.0077 44392 34.0 0.302 0.023
(continued)
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Table 1 (continued)

Name " P " op b Oy to oy, f a¢
Jy) (d) (JUL-2440000

779402 No fit possible

83.4-09 129 1188 148 0.2014  0.0195 5008.7 114.6 0.407 0.044

104.9+2.4 36.6 1460 24 02155  0.0028  4862.1 20.5 0.400 0.013

127.9-0.0 83.7 1638 57 0.1901 0.0063 5558.3 382 0.439 0.026

1380+7.2 20.4 1276 150 0.1990  0.0267 5362.5 86.1 0.384 0.040

The program started in 1978 and has continued into 1988.
Herman’s analysis was based on data from the period 1978-1983.
However, in the period 1983-1988 data were obtained less fre-
quently and were of lower quality. This was partly due to
frequent interference at 1612 MHz by the GLONASS sattelites
(Carter, 1986). Therefore the bulk of the data used in our present
analysis is identical to the data used by Herman.

5.2. Flux curves

First the velocity tracking over the years was checked. We had to
be sure all spectra are lined up. This turned out to be no problem
for the DRT.

We continued with fitting the asymmetric cosine models (25)
to our log flux curves for f(t). The fits were made with the
procedure described in Sect. 4.3. In almost all cases (except for
VY CMa) different channels in the spectrum could be fitted with
the same log flux curve, and with the same value for b. This
justifies our assumption of saturated masering, which we have
made throughout this paper.

Most often the deviations from the fitted model were greater
than expected from the thermal noise in the spectrum. From the
log flux curves it was clear that this was not due to a wrong
model, so we conclude that the deviations are caused by calib-
ration defects. We checked the residuals of all observations on a
daily basis for systematic effects. We are convinced that the
quality of the log flux curves is mainly affected by bandpass
calibration for these bright sources.

In Table 1 we present the parameters that describe the log
flux curve. Because some stars have many spectral channels we
list in column 2 the value of 10™ [Eq. (3)] belonging to the
brightest channel. Note that some periods we found are larger
than 2000 d: such values could not be measured by Herman in his
monitor program. We have estimated the errors on the para-
meters of our model from the goodness of the fit.

In Fig. 4 we plot the measured signal to noise obtained from
the model fit against expected signal to noise ratio from thermal
noise. The maximum value of =20 is due to a limit of 5% in
cross-band calibration. Using formula (22) we can see that we get
errors on the phase lag for a typical OH/IR star (P=1000d,
b=0.1) in the order of 10 d, i.e. 30% of the total lag. So it is quite
difficult to get very accurate phase lags for ordinary OH/IR stars
with these data. Good results are obtained only for stars that
vary with large amplitudes. These are not necessarily the bright
stars in our sample. We hope that a new correlator with 1024
channels will improve our results in the future by making a better
bandpass calibration possible.

10 i
bl
s
S
$
£
s 10 E
~
=
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Fig. 4. Expected dynamic range versus measured relative errors. Clearly
the calibration is limited to 5%

5.3. Resulting phase lags; checking the assumptions

The results of our calculations are shown in Table 2.

First we check our basic assumptions (see Sect. 2.1). We have
already seen, in Sect. 5.2, that all but one stars have variations
consistent with saturated masering. We have also checked for
any systematic departure from linearily increasing phase lags
across the profile. No such effect was found within the errors.
This is not very conclusive on the issue of spherical symmetry,
because individual lags usually have large errors, but it does
validate our method; in particular the use of Eq. (2).

We show (62,,/0%.,) in the fourth column. If Q has the
special structure we described in Sect. 2 this value must be 1. In
67% of 43 cases the simulated error was within 10% of the
theoretically predicted error. The differences are partly explained
by the limited size of each simulation. This result justifies our
assumption that we can use the special form of Q of size (I —1).
Serious differences were found for the cases where either the data
were of poor signal to noise or where large time gaps occured in
the observations. In the latter case we also found substantial bias
in the i.c. lag estimate. The bias was removed by the method
explained in Sect. 4.2.

A minimum check of our method and the underlying as-
sumptions is that all phase lag estimates must have a positive
value. Indeed this is observed within the uncertainties.

We compared our results with those found by Herman. In
general we found that the differences between both values are
reasonably small. In a more formal comparison we estimated the
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error in Herman’s determinations (Herman and Habing, 1985b)
and tested whether the two values of the phaselags are statisti-
cally the same. We have found that there is a small, but signifi-
cant difference. A check revealed that this is due to differences in
the algorithm used. We favour the new values, because a formally
more correct weighting scheme was used to get to the final value
of 1,. Especially the values for OH 127.9—0.0, OH 32.8 —0.3 and
OH 75.3 — 1.8 differ from the phase lag calculated by Herman.

6. Phase lags and distances
6.1. Underlying assumptions

The values found can now be used to calculate new values for
“phase lag” distances of our stars.

When measuring the phase lag we assume the shell to be
unresolved to our telescope and we discriminate between emis-
sion from different parts of the shell by the Doppler shift. As
mentioned before some of the shells can be resolved with syn-
thesis telescopes. The cones will then show as compact regions
and the weak emission, at velocities near the stellar velocity (i.e.
halfway between the two peaks), is seen as a ring. We can then
determine the angular diameter of the shell. Combining the phase
lag and a measurement of the angular size of the shells would
then give the stellar distance, according to the simple model.

To get a correct distance the emission from which we measure
the phase lag must originate at the same distance from the star as
the emission we use to determine the angular diameter. The
phase lag measurement is dominated by the outer parts of the
spectral profile, while the angular size is obtained from radiation
from the inner part of the spectrum. Hence we must rely on two
assumptions:

Spherical symmetry. Several interferometric observations support
this assumption, although for a few stars severe deviations have
been reported. The blobbiness observed in these sources indicates
departures from our simple model. One should be aware, how-
ever, that interferometric observations and the techniques to
analyze them emphasize the blobbiness. The maps of the stars in
our sample with the VLA often indicate that the assumption of
spherical symmetry is rather well justified.

Emission in different directions from the same parts of the shell.
Because maser shells emit non-isotropically (Alcock and Ross,
1986), a systematic error in distance is possible even with a
spherically symmetry shell. Theoretical calculations show that
the emission perpendicular to the outflow velocity can originate
closer to the star than the emission that is emitted along the
velocity axis. The emission along the velocity axis forms the blue-
and redshifted peaks, which contain most of the information for
the determination of the phase lag, while the ring consists of
radiation that is emitted perpendicular to the outflow velocity.
This effect could thus result in measuring distances that are too
large. It turns out to be very difficult to estimate the magnitude of
this bias.

If the maser shells are thin this effect decreases. Although the
thin shell model is valuable to explain the overall shape of the
spectral profiles (Cohen, 1989), recent theoretical work indicates
that OH molecules are present over a large range in radii
(Nertzer and Knapp, 1987). Because of the non-isotropic nature
of the emission, this is not in contradiction with the measured
thickness of the shell from maps (Herman et al., 1985). Theoret-
ical estimates of this bias are possible in principle. One reason to
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Table 2. Phase lags found for those stars that are clearly vari-
able. (The last column justifies our assumption concerning Q

Name 75 Ogim ( Osim >2
(d) Otheor
R Aql 0.7 2.5 0.88
RR Aql —-3.6 39 1.19
SY Aql 164.2 90.6 1.05
NLM Cyg —29 557 1.56
ZCyg 2.5 59 0.99
WX Psc 340 5.6 0.95
WX Ser 339 7.0 0.90
IK Tau 9.7 24 0.98
RS Vir —-19 3.8 1.12
328-0.3 79.5 35 0.83
359413 —26.6 108.9 1.46
11.5+0.1 —11.1 77.4 1.32
12.3-0.2 —145.1 198.4 1.01
128—1.9 1.7 79 1.11
129409 353 59.7 1.38
13.1+5.0 240 18.2 1.17
16.1-0.3 383 34.5 1.50
174—-03 49.6 16.1 1.07
18.3+04 —-8.1 1439 1.24
20.2—-0.1 15.9 119.1 1.34
20.7+0.1 484 13.0 1.26
21.5+4+0.5 924 15.2 1.24
26.2—-0.6 39.3 17.3 1.11
264—1.9 1.0 111 0.93
26.5+0.6 374 6.9 0.92
27.34+0.2 222 14.3 1.00
28.5—0.0 —58 9.8 0.85
28.7—-0.6 139 4.7 1.11
30.1-0.2 8.3 9.6 0.98
30.1-0.7 3.6 13.7 0.97
320-0.5 73.2 12.0 1.12
356—-0.3 19.6 7.8 1.19
369+1.3 12.5 73 0.67
39.7+1.5 22.6 5.5 0.98
39.9-00 20.2 13.1 1.22
423-0.1 52.6 24.0 1.11
448-23 17.0 5.1 1.28
45.5+40.1 30.3 4.5 0.71
753—-1.8 42.5 10.8 0.94
83.4-09 —10.6 21.0 0.96
1049+24 32.6 5.5 1.34
127.9-.0 414 8.4 091
138.0+7.2 0.5 20.9 0.94

assume this bias to be small is given by the realisation that the
shell thickness is not large compared to the coherent pathlength
of the maser. Anyway, we are left with an assumption for which
no quantitative check exists. The only possible (observational)
check of this assumption lies in measured distances themselves.
We can try to measure the distance to several OH/IR stars at the
same distance (e.g. Galactic centre) and so reveal a bias.
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If we do make the two assumptions we may continue with the
straightforward formula

R 1
=—1,C,
2t

(26)
to calculate the radius of the circumstellar shell. For those stars
where an angular size was known the distance was calculated,
provided a significant measurement of the phase lag was ob-
tained (t,> 20,). The values are given in Table 3. In some cases
different authors give measurements for the same angular sizes;
we list the distances obtained with these values separately. The
error in the distance is calculated from both the uncertainties in
phase lag and angular size, but usually this value is dominated by
the error in the phaselag.

These distances differ from the results by Herman and
Habing (1985a), because of the different phase lags; substantially
different distances are found for OH 127.9—-0.0 and OH 32.8
—0.3, two stars for which the previous distance estimate gave
problems.

We have used the distances to determine bolometric lumino-
sities. Following the method of Van der Veen and Breukers
(1989) we have used IRAS 12 and 25 um fluxes to calculate the
total luminosity of these stars. Because the stars are variable we
have used IRAS Working Survey Data Base (WSDB) fluxes and
corrected for variability using expression (25) and the values from
Table 1. We thus assumed that our log flux model describes the
variations of the bolometric magnitude as well as those of the
18 cm radiation. This is reasonable because the IR, where the star
emits most of its energy, pumps the maser. The value of b (and
maybe f) may be slightly different, because the pump is believed
to operate at slightly longer wavelengths. Where the data allowed
us, we have made an estimate of by for this purpose. We present
the calculated luminosities in Table 3 as well. Note that these

Table 3. Distances and luminosities of stars for which an accu-
rate phase lag was determined and for which a measurement of
the angular size was available. References are: 1. Herman et al.
(1985), 2. Herman and Habing (1985), 3. Baud (1981), 4. Chapman
et al. (1984), 5. Diamond et al. (1985), 6. Chapman (1985),
7. Steeman et al. (1989)

Name D Op L oL Ref.
(kpe) (10° Lo)
WX PSC 074 0.15 39.4 16.0 3
20.7+0.1 506  1.38 59 32 1
21.54+0.5 8.51 1.41 96.9 321 1
21.5+0.5 734 138 721 271 6
26.5+0.6 144  0.27 21.6 8.1 1
26.5+0.6 1.30  0.35 17.6 9.5 5
28.7—-0.6 145 049 6.1 4.1 7
320-0.5 11.87 270 67.2 30.6 1
328-03 502 025 23.1 23 1
356—0.3 4.21 1.70 5.8 4.7 7
39.7+1.5 204 050 36.3 17.8 2
39.7+1.5 098 0.34 8.4 5.8 5
448-23 113 0.34 43 2.6 2
104.9+24 230 040 11.7 4.1 2
127.9-0.0 290  0.60 56.8 235 2

values do not include the effects of interstellar extinction. This
may affect the luminosity by a factor of two for the stars at large
distances.

Disregarding this, we find that most luminosities are well
below the so called AGB-limit. This limit is a result from stellar
evolution theory. If these OH/IR stars are the progenitors of
planetary nebulae and eventually become white dwarfs, then the
core mass of the star should not exceed the Chandrasekhar limit.
The core mass, on the other hand, yields an upper limit for the
luminosity at this mass through a relation between core mass and
luminosity (Paczinsky, 1971). This gives a limit of 59 000 L. We
thus argue that the observed luminosities are not in contradiction
with a model in which these stars are eventually evolving into
planetary nebulae and white dwarfs.

But even although our stars are below the AGB-limit, they
are still very luminous compared to infrared selected AGB ob-
jects of which the luminosities are derived statistically (Habing,
1987, van der Veen and Habing, 1988), for which typically
5000 L, is found. We have discussed the possibility of a bias in
the phase lag method (Sect. 6.1) and one through calibration
errors (Sect. 3.2) of which the first puts these stars too far away,
but we are convinced this effect is smaller than the typical errors
on our distances. We thus find that the stars selected for moni-
toring are of high luminosity.

There are three possible selection effects which could account
for this. First and most obvious is that by selecting bright OH
sources we select bright IR sources. Though the relation between
IR and OH is not well established, nor very narrow (Réttgering,
1989), some general relation should be present which could
account for this (Herman et al., 1984). Another possibility is that
we have made a selection effect, because we can only determine
accurate distances to stars that are highly variable. Perhaps
through evolutionary effects these are the brightest objects. Third
these stars were all selected to lie within the plane of the Galaxy.
This way we definitely will bias the sample in favour of the more
massive AGB stars with the higher luminosities (Likkel, 1989).

7. Conclusions

We have derived an algorithm to measure phase lags from series
of OH spectra. In this algorithm we can use all channels available
in the spectrum. It is based on combining phase lags £;; measured
between pairs of channels. The statistical weights for the combi-
nation are obtained from simulations. This also determines the
error in the final answer. Under simplifying assumptions we show
that there are (I —1) independent pairs in an I channel spectrum.
This yields a simple algebraic scheme to combine the individual
£;;. We show that it is justifiable to apply the algorithm to real
data, despite the assumptions made.

We derive, under further assumptions, an expression for the
error-in phase lags in terms of observational parameters. We can
thus predict the accuracy with which a phase lag can be obtained.
This is important for new monitor programs.

Single dish experiments to measure these lags are usually
limited by calibration shortcomings. Miscalibration of the total
flux scale during observations can introduce a bias in the final
result. We have argued that the deviations on short time scales
from smooth flux curves on DRT data are caused by cross-band
calibration effects. The suggestion by Herman and Habing
(1985b) that these deviations reflect the thickness of the shell
seems superfluous.
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More accurate phase lags from single dish telescopes can be
obtained by long and careful monitoring of strongly varying
OH/IR stars. Instrumental improvements to the situation des-
cribed for this project are possible. For instance, more correlator
channels improve the situation, because of better cross-band
calibration. Especially the use of synthesis telescopes for moni-
toring is advantageous. For instance, simulations as well as
analytic calculations, show that even with a limited number (25)
of observations accurate phase lags can be obtained for OH/IR
stars at the Galactic Centre using the VLA. This is mainly so
because we have a stable cross-band calibration and the possibil-
ity to resolve out the background radiation. We believe phase
lags can be measured with 10% accuracy for individual stars in
such a program. Finally it is vital for this sort of observations
that the 18 cm band is free of interference.

The phase lags calculated for the OH/IR stars from the
Dwingeloo sample show that a new careful analysis was justified.
Though we confirm their overall results, we think our estimates
of phase lags and errors are more reliable than those published
by Herman and Habing (1985b).

Further assumptions are required to calculate distances with
this geometrical method. The first assumption of spherical sym-
metry seems to be satisfied within reasonable accuracy. But we
also have to argue that our measurements of physical and
angular size originate at the same distance from the star. This is
not the same as spherical symmetry in a maser and this last
assumptions is not easily checked.

With these restrictions in mind, we recalculate the distances
of the stars in the Dwingeloo sample. We present an estimate of
the error in the distance for the individual objects that reflects the
observational errors.

In our new analysis the problems with the luminosities of
these stars are no longer evident, but the luminosities are still
very high compared with other samples of OH/IR stars. Several
selection effects can account for this, but a possible bias cannot be
ruled out.
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Appendix A: (co)variances of interchannel lag estimates

Consider one pair of channels, i and j, satisfying the assumptions
of Sect. 2.4.2. We apply a sinc function interpolation to Eq. (12)
and get

S @)=s(t)+p(t),
ft)=s(t —1;;)+p(t).

pi(t) and p;(t) are uncorrelated white noise processes (bandwidth
1/2A, variances ¢? and a}) and 7;; is the interchannel lag. For
convenience, we assume t;;=0, without loss of generality. The
estimate of 7;; is obtained by shifting f(t) relative to f(t) and by
determining the residue R;;(t):

(A1)
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1 T
Ri;(r)=? J (ft—1)—£(t))* dt, (A2)
0
where T=NA is the time span of the observations. The i.c. lag
estimate is the value of © where R;;(7) is minimum, i..

_—Ry(0) [, (pilt)—p;(0))5(2) dt
R,(0) fo G@)?dr

The first expression is obtained from a parabolic approximation

of R;;(t) and the second by substitution of Eq. (A1) and applica-

tion of the small error assumption.

An expression similar to (A3) can be written down for a

second pair of channels, k and I. The covariance of the two
estimates is

E(s, £, S0 Jo SOSEVE(p () —p,()(pelt) = pi))) dr bt
o (Jo (@) dey? '

(A3)

ij

(A4)

The expectation in Eq. (A4) consists of four terms of the type
t—t’
duE(pi(t)p;(t')) = d;. 07 sinc (T)’ (A5)

since p;(t) is bandlimited white noise. Evaluation of Eq. (A4) thus
gives

E(£;t) = (05— 0u)o;+(0;,— 0 ) at; (A6)
where
1 T -1
ai=0?<‘j (S'(t))zdt> , (A7)
Ao

which is Eq. (14) of the main text. The variances of an estimate
follow from Eq. (A6) by taking k=i and /=j, which gives Eq. (13)
of the main text.

Appendix B: derivation of explicit expressions for £,

The errors ¢,; in Eq. (17) have a (I — 1) x (I — 1) covariance matrix
Q, the elements of which are given by Eq. (15). Writing Q down
we find that it is of a particular form:

O=A+a,ee", (B1)
where A is a diagonal matrix with elements «, . . . , o, and where
e is a vector with unit elements, e"=(1, ..., 1).

Expression (B1) is a special form of (4 + BCBT), for which the
following identity holds.

(A+BCB") '=4"'—A"'B(C"'+B"A"'B)"'B"4"'. (B2
Application to Eq. (B1) gives
o
g 47 led™M B3
2 1+a,e™d e ¢ (B3)

This expression is easily worked out since 4 is diagonal. Substitu-
tion into Eqgs. (10) and (11) and some straightforward algebra
leads to the expressions (18), (19) and (20) of Sect. 2.5.
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