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Abstract

Stars with initial masses of 0.8 < M⋆ < 9M⊙ eject most of their mass when evolving along the asymp-

totic giant branch (AGB) phase. The ejected material eventually cools down, which leads it to con-

densate and to form dust grains and molecular gas around the star, creating an extended circumstellar

envelope (CSE). The mechanism responsible for the expansion of the dusty and dense CSEs is not com-

pletely understood. It is suggested that stellar radiation pressure on the dust particles can accelerate

them outwards. Then, by collisional exchange of momentum, the dust particles drag along the molecu-

lar gas. However, this scenario cannot explain the onset of asymmetries in the CSEs observed towards

more evolved sources such as post-AGB sources and Planetary nebulae.

Part of the research in this thesis is focused on the study of the role that the stellar magnetic field plays

on the formation of the collimated high-velocity outflows observed towards post-AGB sources. Polar-

ized maser emission towards (post-)AGB stars has become an useful tool to determine the properties of

the stellar magnetic fields permeating their CSEs. However, the polarization fraction detected can be

affected by non-Zeeman effects. Here I present the results of our analysis of the polarization properties

of SiO, H2O and HCN maser emission in the (sub-)millimetre wavelength range. The goal of this anal-

ysis is to determine whether polarized maser emission of these molecular species can be used as reliable

tracer of the magnetic field from observations at (sub-)millimetre wavelengths.

I also present the results of radio interferometric observations of both continuum and polarized maser

emission towards post-AGB stars. The sources observed are characterized by H2O maser emission

arising from their collimated, high-velocity outflows. The observations have been carried out with the

Australian Telescope Compact Array aiming to detect both polarized maser emission and non-thermal

radio continuum emission.

Part of the research on this thesis is dedicated to radiative transfer modelling of CO emission towards

asymmetric AGB sources. Radio observations of CO emission are commonly used to probe the mass-

loss rates and the kinematics of the CSEs. However, in most cases the observed sources are assumed

spherically symmetric. Here I present the results of simulated observations towards oblate CSEs. The

aim of this study is to identify the effects induced by the asymmetries on the observed spectral features,

and consequently, on the physical parameters of the CSEs derived assuming the sources spherically

symmetric.
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CHAPTER 1

Introduction

Stars are spread through the Hertzsprung-Russell (HR) diagram (Fig. 1.1) according to their mass,

luminosity and surface temperature. Their position on the HR diagram is also an indicative of their

evolutionary status, where each phase is the base for the different research areas that stellar astrophysics

comprises. One of those phases is known as the Asymptotic giant branch (AGB) phase, where low- and

intermediate-mass stars begin the end of their evolution.

Back in 1966, Sandage and Walker for the first time used the term asymptotic to refer to those stars

observed towards the globular cluster M92, whose position in both the two-color (U − B, B − V) and

the color-magnitude diagram (particular cases of the HR diagram) is slightly shifted from the position

of the red giant and subgiant stars (Fig. 1.1). According to Sandage and Walker (1966): “Differences

in chemical composition along a given branch seems unreasonable in light of our present knowledge,

and we have no explanation for the effect at this time. Nevertheless, it is interesting to speculate that,

if branch B stars are normal and if only a simple discontinuity had existed between branches B and C,

each satisfying the gravity line, this result might have arisen from an enrichment in the metal content

of the group C stars. This enrichment might be brought about if these objects represent stars which

have passed through the extreme red-giant phase (. . . )”. Nowadays we know that such enrichment is

one of the consequences of the thermal instabilities that the interior of the star undergoes throughout its

evolution beyond the Main Sequence (MS) phase.

In the next sections I give a general description of the evolution of stars from the MS to the AGB, which

is based on Habing and Olofsson (2003). I also give an overview of the main subject of the observational

studies aimed to unveil the late stages of stellar evolution of low- and intermediate-mass stars: The dusty,

cold, and dense circumstellar envelopes (CSEs) of AGB and post-AGB stars. References different to

Habing and Olofsson (2003) will be mentioned explicitly throughout the text.

1



1 Introduction

Figure 1.1: Top Schematic view of the Hertzsprung-Russell diagram and the computed evolution track from the

main sequence to the white dwarfs phase for a 2 M⊙ star with solar metallicity. Numbers next to the track are the

log of the time spend by a 2 M⊙ star duration of each evolutionary phase. Adopted from Herwig (2005). Bottom

Color-color (left) and color-magnitude diagram of the globular cluster M92 observed by Sandage and Walker.

Adopted from Sandage and Walker (1966).
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1.1 Post-Main sequence evolution

1.1 Post-Main sequence evolution

The evolution of stars depends on their mass during the MS phase. Low- and intermediate-mass stars

are those whose main-sequence-mass is between 0.8 and 8-9 times the solar mass (hereafter M⊙). After

spending most of their life burning Hydrogen (H) at the stellar core, low- and intermediate-initial-mass

stars leave the MS once the nucleosynthesis of H starts taking place in a thick shell formed around

the inert Helium (He) core. Because the temperature of the stellar core is not high enough to start

the nucleosynthesis of the He, the energy that guarantees both the hydrostatic and thermal equilib-

rium of the stellar envelope is supplied by the H-burning shell, where the main nuclear processes are

the proton−proton (p−p) chain, which supplies most of the energy, and the Carbon-Nitrogen-Oxygen

(CNO) cycle (figure 1.2). The stellar core gradually contracts whereas the stellar atmosphere expands

and becomes convective. The gravitational energy released due to the contraction of the core, together

with the energy produced at the H-burning shell, lead to a global expansion of the stellar envelope. The

increase of both the stellar radius and the energy flux of the emerging radiation field are observed as

an increase of the luminosity of the star. This places the star along the Red Giant Branch (RGB) at the

HR diagram. Because the readjustment of the internal structure of the star, the base of the convective

envelope can penetrate deep into the region where the nucleosynthesis of H takes place. Hence, products

from the nucleosynthesis of H at the center of the star such as 4He, 14N and 13C, are brought to the outer

layers of the stellar envelope by the convection. Such enrichment of the stellar envelope is due to the

so called first dredge-up, which takes place in the stellar envelope of those stars which pass through the

RGB. During the RGB phase, the structure of the stellar core of stars with M⋆ < 2.0 M⊙ is sustained

due to the increasing degeneracy pressure.

The increase of the temperature in the core leads to a thermal runaway, the so called helium core flash.

It removes the degeneracy of the He-core and ignites the He nucleosynthesis via the triple-α reaction

(figure 1.2). In higher-mass stars (2.0 < M⋆ ≤ 9 M⊙), the beginning of the He-burning phase in the

stellar core occurs in a non-degenerate scenario, once its temperature is high enough (of the order of

108 K) to ignite the nuclear fusion of He. Once the He-burning phase starts, the interior of the star

suffers a new adjustment. The stellar core expands, while its envelope contracts. This, combined with

nucleosynthesis processes at the H-burning shell, lead to an increase of the temperature in the stellar

envelope. The subsequent diminution of its radius is observed as a decrease of the stellar luminosity. In

the HR diagram, the star is now placed at the Horizontal Branch (HB), and depending on its metallicity,

it will be observed either in the red clump (those with solar metallicity) or towards the blue region of

the horizontal branch (those with low metallicity). At this point, the star begins a relative long evolution

phase, where the energy produced in both the He-core and the H-burning shell keep the hydrostatic

equilibrium of the stellar envelope.

The mass fraction of Carbon (C) and Oxygen (O) increase due to the nucleosynthesis of He at the stellar

core, where the electron degeneracy starts playing an important role in the stability of its structure.

Once the He is exhausted in the stellar core, the star undergoes a new readjustment of its internal struc-
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1 Introduction

Figure 1.2: Schematic overview of the three main nuclear burning processes dominating the energy production

at the core of low- and intermediate-initial-mass stars: (top left) p-p chain (top right) CNO cycle (bottom) Triple

alpha reaction. (Adopted from http//:en.wikipedia.org/wiki/).

ture. The inert C−O core begins to contract again, releasing gravitational energy that contributes to the

energy flux of the emerging radiation field, whereas the stellar envelope expands. These effects com-

bined lead to the increase of the stellar luminosity. The further contraction of the stellar core results

in the formation of a He-burning shell between the C−O core and the H-burning shell. The high de-

generacy pressure of the stellar core prevents it from the collapse. But in addition, its high degeneracy

leads to neutrino emission that drains energy from the stellar core. Hence, the stellar core of low- and

intermediate-mass stars will not reach the necessary temperature for any further nuclear fusion of C or

O. In the case of stars with M⋆ ∼ 1 M⊙, the energy output that ensure the equilibrium of the stellar

envelope is provided by the two burning shells. For more massive stars (M⋆ ∼ 5 M⊙), the ignition of the

He-burning shell results in a strong expansion of the region above the inactive C−O core. Such expan-

sion drives the H-burning shell towards regions where the temperature and density are lower and then

extinguishes. Depending on the composition, stars with M⋆ > 4 M⊙ undergo a second dredge-up. For

those stars, the convective envelope is able to penetrate deep into the inactive H-burning shell, taking

material already processed such as 4He, 14N and 13C up to the outer layers of the stellar atmosphere.

This can be observed, for instance, with the increase of the abundance of 14N, and the lowering of the

ratio 12C/13C at the stellar surface.

After the second dredge-up, the H-burning shell is reignited, and the star begins its evolution along the

Asymptotic giant branch.

4
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1.2 Stellar evolution along the Asymptotic giant branch

Regardless its mass, the internal structure of stars at the beginning of the AGB phase is similar. The

degenerate C−O core is surrounded by the He-burning shell, which is situated between the stellar core

and the more external H-burning shell. On top of the H-shell is the very extended stellar envelope.

During the early AGB phase, the major contribution to the total luminosity of the star comes from the

He-burning shell, i.e. assuming that L⋆ ≈ LHe + LH , then LHe > LH .

The energy is produced via the triple−α reaction in the He-shell, which is a nuclear energy source very

sensitive to the temperature. The balance between the energy production rate and the energy loss due

to flux divergences is determined by the thickness of the He-burning shell. Because the thickness of the

shell decreases as the He is burnt, the energy production rate eventually overcomes the energy loss from

the shell, which is basically an increase of temperature in the He-shell. This leads to a thermal runaway,

the so called helium shell flash. Depending on the core mass, the He-shell flash luminosity can reach

values of the order of LHe = 108 L⊙. After the He-shell developes the first shell flash, the star becomes

a thermally pulsing (TP-)AGB star.

During one thermal pulse, the excess of energy produced by the He-shell flash results in an expansion

of the zone surrounding the He-shell that push outwards the layers above it. Thus, the H-burning shell

is again driven towards regions where it nearly extinguishes. Since the large amount of energy produced

by the He-shell flash cannot be transported by radiation alone, the intershell zone becomes highly con-

vective. The intershell convective zone (ISCZ) extends from the interphase between the He-shell and the

C−O core up to the dormant H-shell, and contains the products of the nucleosynthesis in both burning

shells. The most abundant elements in the ISCZ are 4He (70-75%) and 12CO (20-25%). It also contains

small percentage of 16O and 14N. Further nuclear reactions involving α particles within the ISCZ result

in the increase of the abundance of 22Ne and 13C which, after further nuclear reactions with α particles,

produce a small density of neutrons that eventually increase the abundance of neutron-rich isotopes in

the ISCZ via the so called s-process. Once the high energy production start to decline at the He-shell,

the ISCZ contracts. This leads to reignition of the H-burning shell. During this new readjustment, the

bottom of the convective stellar atmosphere penetrates deep into the former intershell zone. How deep

the convective envelope reaches depend on the core mass and on the strength of the ongoing thermal

pulse. Hence, the surface abundance of 12C and neutron-rich isotopes such as Ba and Zr is changed.

This is referred as the third dredge-up.

Due to the third dredge-up, the number of thermal pulses that an AGB developes has a strong impact

on the surface abundance of the star, and in particular, on the surface abundance ratio C/O. At the

beginning of the AGB phase the surface abundance of C and O is such that C/O∼ 0.3, but due to the

dredge-up of 12C after each thermal pulse, the abundance of carbon in the stellar envelope could balance

the surface abundance of oxygen C/O≈ 1, or even surpass it, which results in C/O> 1. Although the

third dredge-up is necessary to increase the surface abundance of C, if the temperature at the bottom of

the stellar envelope is high enough to trigger the CNO cycle, then the 12C dredged from the center of the

5



1 Introduction

Figure 1.3: Evolution of the C/O ratio for nine stellar models during the AGB phase. The columns give three

different modelled masses (4, 5 and 6 M⊙) for each metallicity (rows). Adopted from Habing and Olofsson

(2003).

star could be burned before being mix in the outer layers of the stellar envelope. The efficiency of the

nucleosynthesis at the bottom of the envelope, the Hot bottom burning (HBB), eventually determines the

elements abundance in the stellar atmosphere. The efficiency of the HBB depends on both the mass and

the metallicity of the star. The HBB is more efficient for higher mass AGB stars with solar metallicity,

while for low metallicity stars, the third dredge up is efficient enough to invert the value of the C/O ratio

at the stellar surface (Fig. 1.3). According to the surface C/O ratio, the stars evolving along the AGB are

classified as either M-type (O-rich, C/O< 1), C-type (C-rich, C/O> 1) or S-type (C/O≈ 1) AGB stars.

Once the contribution of the H-shell to the total luminosity, LH , surpass LHe, the star begins the so

called interpulses phase. This phase is characterized by a temporary stability of the innermost layers of

the star, as well as by its constant luminosity, which is a result of the steady energy production rate in

the H-burning shell. Depending on the stellar mass, the interpulses phase can be of the order of 104 yr

for the more massive stars (M⋆ = 5 M⊙), and 105 yr for stars with M⋆ = 1 M⊙ (Wagenhuber and Groe-

newegen 1998). At the end of the interpulses, the conditions for a new thermal instability in the He-shell

are set again. As the star evolves along the AGB phase, the time scale between two consecutive pulses

decreases, whereas the strength of the thermal pulses increases.

The luminosity variations induced by the thermal pulses imply variations of the stellar radius. More-

over, the large amount of energy released by the thermal instabilities at the center of the star produces

shock waves that propagate outwards following the density gradient of the stellar atmosphere. As the

outer layers of the stellar atmosphere expands, the density drops, and the shock waves eventually reach

supersonic speed, leading to pressure-driven ejection of atomic gas from the outermost layers of the

6



1.2 Stellar evolution along the Asymptotic giant branch

stellar atmosphere. If this material reach regions where the temperature and the density conditions are

such that it condensates and forms solid grains, then its interaction with the emerging radiation field can

generate a radiation-driven wind. Otherwise, the ejected material eventually falls back onto the stellar

atmosphere. This is the most accepted scenario describing the mass-loss process, however, the details of

the mass-loss mechanism, which involves for instance its dependence on time, stellar mass and metal-

licity, are yet rather unknown.

The mass-loss rate together with the driven mechanism(s) determine the formation of the a extended

circumstellar envelope. The time scale of the AGB phase for a particular source is determined by its

mass-loss rate. In fact, the end of the AGB phase is determined by the ejection of its stellar atmosphere,

i.e., once the mass of the stellar envelope is < 10−3M⊙, the system composed by both the extended CSE

and what remains of the star (the former stellar C-O core surrounded by a small mass envelope) begins

its evolution throughout the post-AGB phase (section 1.3).

1.2.1 The circumstellar envelope

As discussed above, a consequence of the thermal instabilities during the evolution of stars along the

AGB phase is the ejection of mass from the most external layers of the stellar atmosphere. Obser-

vational studies suggest that at the beginning of the AGB phase the mass-loss rate is of the order of

Ṁ = 10−8 M⊙ yr−1, and can reach values of the order of Ṁ = 10−4 M⊙ yr−1 near to the end of the

AGB phase1. The mass-loss rate, one of the most important parameters within the study of AGB stars,

determines the time scale of the evolution along the AGB phase. The ejected material is slowly driven

outwards by the stellar wind, with typical velocities between 5-15 km s−1. This process leads to the

formation of a dusty and molecular-rich CSE. In general, it is thought that the formation of the stellar

wind is a consequence of the formation of solid particles which efficiently exchange momentum with

the stellar radiation field gaining acceleration in the radial direction. Thus, the dust particles drag the

gas outwards by collisional exchange of momentum (Lamers and Cassinelli 1999). But in particular, this

scenario does not suit the formation of the stellar wind for M-type AGB stars without requiring specific

dust grain properties. Consequently, the driving mechanism and the formation of the CSEs of AGB star

is yet poorly understood.

Nevertheless, it is acknowledged that the formation of CSE is determined by the mass-loss rate, and

the formation of molecules and dust particles must be a key factor for the formation of the CSEs. At a

certain distance from the stellar atmosphere, the shocks induced by the stellar pulsations set the proper

density and temperature conditions for chemical reactions to produce di- and polyatomic molecules

such as Carbon monoxide (CO), Silicon monoxide (SiO), Water (H2O), Silicon carbide (SiC), Hydrogen

cyanine (HCN), among others. Further out in the CSE, the conditions are favorable for the condensation

and subsequent nucleation of solid material; dust grains of micrometer size. Although the amount

1 In contrast, the mass-loss rate of the Sun is of the order of Ṁ = 10−14 M⊙ yr−1, and the velocity of the solar wind is

∼ 500 km s−1.

7



1 Introduction

Figure 1.4: SWS ISO spectra of three carbon rich AGB stars, and the infrared image of IRC+10216 (bottom right).

The emission at the infrared is dominated by thermal dust emission of the CSEs. The most evident features are

observed at λ ∼ 11µ m and ∼ 26µ m. The former is associated to SiC grains (Lorenz-Martins and Lefevre 1994),

whereas the latest is associated to MgS grains (e.g Hony, Waters and Tielens 2002). IRC+10216 image credits:

Izan Leao (Universidade Federal do Rio Grande do Norte, Brazil).

of dust grains represent only one percent or less of the mass of the gas ejected, the high efficiency

of absorption of the stellar radiation field at short wavelengths (optical and near infrared wavelength

range) make them play a very important role in the dynamics of the CSE. The dust formation leads to

an increase of the opacity of the CSE, which reaches its peak value at the end of the AGB phase. Due

to the high absorption efficiency of the dust grains, the radiation produced by the central star at shorter

wavelengths (typically at 1µm) is absorbed and eventually reemitted as thermal dust radiation at mid-

and far-IR wavelengths. In fact, the central star is obscure at the optical and near-IR wavelength range.

But in turn, AGB stars, in particular those at the end of the AGB phase, are among the brighter Galactic

sources at the IR. Therefore, the spectral energy distribution at the IR is dominated by the dust emission

(Fig. 1.4), with typical peak values between 10 and 20 µm.

The temperature distribution throughout the CSE is determined by the interplay between the dust

grains and the different radiation fields permeating it, but in particular, with the radiation field from the

central star. The dust and molecular species formed in the CSE are determined by the relative abundance

8



1.2 Stellar evolution along the Asymptotic giant branch

of C and O of the stellar atmosphere at the time when the material was ejected. Observations at the IR

combined with laboratory measurements and the results of radiative transfer models, have lead to the

identification of the most abundant dust grain species formed within the CSEs. For instance, either

amorphous carbon or silicate grains are thought to produce the dust continuum emission observed at

the IR of C-type AGB or M-type AGB stars, respectively. The emission from other grain species are

observed as emission or absorption features on top of the continuum emission.

The formation of the molecular gas takes place at regions with temperatures below T = 3000 K, within

the extended stellar atmosphere and throughout the CSEs. The time scale for a particular chemical

process must be shorter than the time scale of the dynamics within a particular region where a molecular

species is formed. Close to the star, where temperature and density are higher, the molecular species

which can be form are defined by local thermodynamic equilibrium (LTE), although non-LTE processes

(shocks) also have strong influence on the formation of different molecular species. Within the LTE

frame, the most abundant molecules formed are those with high dissociation energy such as H2 and CO.

Because CO is formed in high abundance, it locks up most of the available O and C. Then, depending on

the value of the C/O ratio, the chemistry of the CSE will be characterized by either O-bearing (C/O< 1)

or C-bearing (C/O> 1) molecules. Observations have shown that, after H2 and CO, among the most

abundant molecules in O-rich CSEs are SiO, H2O, OH (hydroxyl), CO2 (carbon dioxide), whereas

towards C-rich CSEs they are SiC, HCN, and CN (cyano radical). In total, about 80 different molecular

species have been identified towards the CSE of the AGB star prototype IRC+10216, although this

number will increase due to ongoing surveys which include a number of C-type and M-type sources.

The abundance of a particular molecular species depends on the mass-loss rate of the star, the expansion

velocity of the CSE, and both its formation and the photodissociation radii. The latest refers to the region

where the abundance of a particular molecular species decreases by a factor of two from its initial value

due to UV photons from the interstellar radiation field. Because the photodissociation radius depends

on the dissociation energy of the molecule, the abundance of H2 declines further out than the abundance

of other molecules. Assuming a steady expanding CSE in the radial direction, and constant mass-loss

rate during the AGB phase, the number density distribution of H2 is parametrized as

nH2
≈ 106

(

Ṁ

10−6

)(

15 km s−1

v∞

)(

1015 cm

r

)2

cm−3, (1.1)

where Ṁ is measured in M⊙ yr−1, v∞ in km s−1 and r in cm. Thus, based on the number density

distribution of H2, the fractional abundance of other molecular species X in the CSE is given by

fX(r) =
nX(r)

nH2
(r)
. (1.2)

For instance, average values measured are fCO ∼ 10−3, fH2O ∼ 10−5, fSiO ∼ 10−6.

Most of the molecular gas species in the CSEs are form from the products of the different nucleosynthe-

sis processes that take place in the interior of the star during their evolution. The subsequent expansion
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1 Introduction

of the CSEs eventually lead to the replenishment the interstellar medium, fact that makes AGB stars

play an important role on the chemical evolution of their host galaxies.

By the study of the properties of the molecular in the CSEs, it is possible to have a rough idea about

the mass-loss history of the AGB star. Observationally, the molecular gas content in the CSE is studied

at near-IR using absorption lines, and from the mid-IR to radio wavelengths using both thermal and non-

thermal line emission. Most of the observations at radio wavelengths are focussed on the detection of

molecular emission lines. In particular, the millimeter and sub-millimeter wavelength range represent an

unique spectral window for observations of a number of rotational transitions of molecules such as CO,

SiO, H2O, HCN, SiS, NaCl, among many others, which allow the study of different spatial scales within

the CSEs. About 80% of the molecules in the CSEs have been detected at radio wavelengths. The exci-

tation conditions of the rotational levels of different molecular species and their abundance throughout

the CSEs of AGB stars is such that line emission from different molecular species highlights different

regions within the CSEs. A general description of radio observations of the molecular component of

CSEs of AGB stars is presented in section 3.1 .

1.2.2 Circumstellar maser emission: Overview

Microwave amplification by stimulated emission of radiation (Maser) is also generated naturally in the

CSEs of AGB stars. In particular, a number of rotational transitions which belongs to different vibra-

tional levels of SiO, and to the ground vibrational levels of HCN, H2O, SiS and OH have been detected

producing maser emission throughout the CSEs of AGB and post-AGB sources. Astronomical masers

are bright and intense spots towards dense enviroments, ideal for interferometric observations. Maser

emission of SiO, H2O and OH have been detected towards O-rich CSEs of AGB stars. Because the

density and temperature conditions required for the pumping mechanism to operate for each molecular

species is different, the emitting regions are also differenciated within the CSE (Fig. 1.5).

Although it is still unclear which is the main pumping mechanism of the SiO maser transitions, it is

well known that the emitting region is located between the stellar photosphere and the dust-forming

radius; in the so-called extended atmosphere. Interferometric obervations have revealed that the SiO

maser emitting regions form ring-like structures centred on the star at distances ranging between ∼ 2-

6 R⋆ (see Diamond et al. 1994; Boboltz and Diamond 2005). Because the SiO abundance is affected by

the formation of silicate grains, SiO maser emission is not expected to trace regions beyond the dust-

formation radius. The high variability of the SiO maser spectra shows the complex dynamics of the SiO

maser region. In addition, the fact that rotational transitions in vibrational excited levels up v = 4 are

detected with similar distribution indicates that the pumping mechanism of SiO is not yet completely

understood.

Further out in the CSE, at intermediate distance from the star (typically a few tens to hundred of

AU), the H2O maser region is found. It is thought that the main pumping mechanism are collisions with

neutral molecules. Therefore, the maser emission region is bound by the collision rates. H2O is among

10



1.2 Stellar evolution along the Asymptotic giant branch

Figure 1.5: Schematic representation of the regions where the SiO, H2O and OH are generated in the CSEs of

AGB stars, and their spectra. The OH maser emission traces the outermost region of the CSEs, therefore the

peaks of the emission appear at the most blue- and red-shifted velocities with respect to the systemic velocity

(v⋆). SiO maser emission arise from regions close to the star, interior to the dust formation ratio. The velocity of

the SiO spectral features is close to and centered on the systemic velocity. The H2O maser emission arise from

an intermediate region of the CSE, and its spectral features are spread over the velocity range defined by the OH

spectral features. The sketch is not scaled.
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the most abundant molecules the CSEs of late-type stars (e.g. Maercker et al. 2008; Menten, Melnick

and Phillips 1990). The most studied H2O maser emission is the low-frequency 616-523 transition at

22.2 GHz. Since this transition is not affected by the atmospheric precipitable water vapor (PWV), it has

become a reference in the study of water maser emission from astrophysical sources. It has been detected

towards the expanding CSEs of late-type stars, tracing regions that are still undergoing acceleration, and

high-velocity outflows generated in the envelope of post-AGB stars. This variety of scenarios gives us

an idea of the broad excitation conditions of the 22.2 GHz maser (high-density regions nH2
> 108 cm−3

and temperatures 2000 K > T > 200 K, Neufeld and Melnick (1991); Humphreys (2007)).

The photodissociation of H2O lead to the formation of OH at the outermost regions of the CSEs

of AGB stars. OH maser emission from the ground vibrational level at 1612 MHz (satellite line) and

at 1665 and 1667 MHz (main lines) are observed tracing the steady expanding regions of the CSEs

of O-rich CSEs. OH was the first molecular species found producing maser emission towards late-

type stars (Cohen 1989). Indeed, the OH/IR sources are bright infrared M-type AGB stars with strong

1612 MHz OH maser emission. Because these are bright sources at the IR, the pumping mechanism

of the 1612 MHz line is though to be radiative through OH IR lines at 35 µm and 53 µm, while the

pumping mechanism for the main-line transition is not well determined yet. In particular, the double-

peak spectral feature observed at 1612 MHz towards steady-expanding, spherical CSEs is thought to

define the expansion velocity of the CSE, tracing regions at distances of the order of 1016cm from the

central star. In fact, the velocity separation between the blue- and red-shifted peaks is centered at the

systemic velocity of the central star (figure 1.5).

Finally, HCN and SiS maser emission have been detected towards the C-rich CSEs, arising from

regions similar to those traced by SiO in the O-rich CSEs. The pumping of the HCN maser transitions

observed (J = 1 − 0 and J = 2 − 1) is more likely caused by the absorption of infrared photons rather

than by collisions, though a combination of both processes cannot be ruled out (Goldsmith et al. 1988).

Therefore, observations of maser emission arising from different regions towards AGB stars can probe

the kinematics of the molecular gas throughout the CSEs. Furthermore, polarized maser emission is

usually detected towards the most bright and compact spots. Hence, the intensity of the magnetic field

permeating the emitting region can be measured, and consequently, its large-scale morphology can be

traced by detecting polarized maser emission from different molecular species.

The description of the generation and propagation of maser radiation is given in chapter 2.

1.3 Beyond the AGB: Post-AGB Stars

Post-AGB stars are thought to represent the group of stars that recently left the asymptotic giant branch

phase and will develop into a planetary nebula (van Winckel 2003). The post-AGB is a very short time

scale phase compared to the standard time scale of stellar evolution. It can be as short as 100 yr for the

higher mass sources. Once the hydrogen-rich stellar atmosphere has been ejected, the mass-loss rate

decreases to its minimum value and the central star evolves to higher temperatures while its luminosity
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remains roughly constant. At the same time, the CSE slowly detaches from the central star and cools.

The spectral energy distribution (SED) at the infrared (IR) of post-AGB stars are characterized by the

contribution of the stellar radiation at the near-IR and the thermal dust emission at mid- and far-IR. As

the CSE expands, the distribution of temperature which characterizes the dust emission during the AGB

phase changes. The SED at the mid-IR begins to display stronger emission features over the continuum

emission that dominates the SED during the AGB phase. The effective temperature of the central star

increases, reaching temperatures > 1.5 × 104 K. At the end of the post-AGB phase, the energy of the

radiation field produced by the central star increases. This results in the production of high energy

photons able to photoionize the inner shells of the CSE, leading to the formation of outstanding sources

with a wide variety of morphologies known as Planetary Nebulae (PNe, Fig. 1.6).

It is generally assumed that the mass-loss process along the evolution in the AGB is spherically

symmetric. However, a high percentage of PNe have been observed displaying aspherical symmetries

that include elliptical, bipolar or multipolar shapes. It is still unclear at what point in the evolution

toward a PNe the departure from the spherical symmetry starts and even more importantly, what the

physical processes involved to form the complex shapes observed are. The evolution of the CSEs beyond

the AGB phase often involves the interaction between a fast collimated wind, which could be created

during the very last thermal pulses of the central star; and the steadily expanding CSE formed during

the AGB. Therefore, the post-AGB is a key phase for the understanding of the evolution of the CSE,

where the mechanism(s) responsible for shaping asymmetric PNe must become more important than

the mechanism responsible for the mass-loss.

Observational surveys focused on post-AGB stars have revealed that their CSEs display clear sig-

natures of aspherical morphologies such as axisymmetric outflows or equatorial density enhancements

(e.g. Bujarrabal et al. 2001). This fact indicates that the departure from the spherical symmetric scenario

assumed for the mass-loss along the AGB phase takes place before the CSEs becomes photoionized.

In particular, post-AGB sources displaying bipolar or multipolar outflows have became an unique case

for the study of the mechanism shaping the CSEs. Bujarrabal et al. (2001) measured the linear momen-

tum of the bipolar outflows observed towards a set of sources in transition between the AGB and the

PN phase. Their results prove that the momentum measured towards those fast outflows exceeds the

maximum momentum provided by radiation pressure alone, in some cases by a factor of 1000. There-

fore, a different energy source is needed in order to trigger the ejection of such collimated high-velocity

outflows. Another evidence of the propagation of collimated high-velocity outflows generating strong

shocks within the CSE is the detection of post-AGB sources with water maser emission spread over

unusually large velocity ranges (≥ 100 km s−1, Likkel and Morris 1988) the so called water fountains

(Section 1.3.1). The effects of accretion of circumstellar mass on stellar or substellar companions; and

large scale magnetic fields are strong candidates to be the source of that missing energy. However, the

lauching mechanism of the high-velocity outflows, as well as the origin of the collimating magnetic

field, are still under debate. The short time scale of the post-AGB phase represent a observational chal-

lenge, and multiwavelength observations of a large group of late AGB and post-AGB are required to
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Figure 1.6: A sample of the wide variety of morphologies observed at the planetary nebula phase. Credits: Bruce

Balick, Howard Bond, R Sahai, their collaborators, and NASA.
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constrain, in particular, the physics behind the shaping of their CSE.

1.3.1 Water fountains

As mentioned in section 1.2.2, a number of rotational transitions of SiO, H2O, OH, HCN and SiS have

been observed producing maser emission from different regions in the CSEs of AGB stars. The OH

maser emission is detected arising from the outermost regions of the CSEs, producing a characteristic

double-peak spectrum. Typically, for spherically symmetric CSEs, the two peaks observed in the OH

maser spectra defines the most blue- and red-shifted velocities of the CSEs in the line-of-sight with

respect to the stellar velocity. In addition, the velocity range of the H2O maser spectra is narrower than

the velocity range of the OH, because the region in the CSE where the H2O masers are generated is

closer to the central star and is still being accelerated. Hence, all the spectral features from H2O and

the other molecular species producing maser emission are expected to appear within the velocity range

defined by the the OH spectra for a specific source (figure 1.5). The same result has been found in

most of the cases towards post-AGB sources. However, a class of post-AGB stars, the so called “Water

Fountains”, is characterized by the detection of H2O maser emission over an unusually large velocity

range broader than the velocity range defined by the OH maser emission. Sources with H2O maser

velocity spread over ranges from 100 to 500 km s−1 have been detected (e.g. Likkel and Morris 1988;

Deacon et al. 2007, Walsh et al. 2009, Gómez et al. 2011). Those H2O masers have been observed

tracing regions where the interaction between the axisymmetric high-velocity outflow and the slow

AGB wind seems to be active. Thus, the H2O masers are probably excited along the outflow, in a region

where the density is affected by the propagation of the shock-front of the high-velocity outflow. Recent

infrared imaging of water fountains have revealed bipolar and multipolar morphologies (Lagadec et al.

2011). Despite the small number of post-AGB sources confirmed up to date displaying high-velocity

H2O maser emission (14 sources), it seems that this kind of sources have only recently passed along the

evolutionary stage where the onset of high-velocity outflows occurs, i.e. water fountais may represent

those post-AGB sources with kinematic ages of a few tens of years. Therefore, water fountains provide

an unique scenario to test the different hypotheses addressed in the literature to explain the formation of

the different morphologies observed at the PN stage, or at least of those displaying bipolar or multipolar

lobes. In this context, it is necessary to constrain the physical conditions of the gas where the H2O

maser emission is generated. Single dish observations give important information about the intensity

of the maser emission, whereas interferometric observations seems to be the most suitable technique

to study their spatial distribution in the high-velocity outflows, as well as the polarized emission from

different maser spots. For instance, Vlemmings, Diamond and Imai (2006) have detected circular and

linear polarization in the H2O maser features along the jet of W43A, the archetypal water fountain.

They found that the jets of W43A are magnetically collimated. Therefore, the detection of polarized

maser emission from water fountains is useful to determine the role of the magnetic fields on the onset

of wind asymmetries during the evolution from AGB stars to aspherical PNe.
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A general description of interferometric observations of maser emission is given in section 3.2. The

results of our interferometric observations of polarized H2O maser emission carried out towards two

water fountains are presented in chapter 5.

1.4 Radiative transfer

The observational study of the CSE of AGB stars is complemented with numerical models aimed to

reproduce the observed spectral energy distribution of the dust at the infrared, as well as to fit the

molecular line emission observed at (sub-)millimeter wavelengths for a particular molecular species.

The measured intensity towards an AGB source is the result of the propagation of the stellar radiation

field through the dense CSEs. In order to obtain a detailed description of the interaction between ra-

diation field and both the gas and dust content in the CSEs of AGB stars, it is necessary to solve the

equation of radiative transfer.

In the general context, the radiative transfer equation describes the variation of the specific intensity

of radiation within a certain frequency range as a function of the length travelled within a medium. It is

given by

dIν

ds
= −κν I0 + ǫν, (1.3)

where κν and ǫν are respectively the absorption and the emission coefficients of the medium. Defining

the optical depth of the medium as τν = κν ds, the equation 1.3 can be written as

dIν

dτν
= −I0 + S ν, (1.4)

where S ν = ǫν/κν is the source function. In the case of molecular line emission, ǫν and κν are function

of the level population of the upper and lower energy states of a particular transition

ǫν =
hνul

4π Aulφu,νNu, (1.5)

κν =
hνul

4π (NlBluφl,ν − NuBulφu,ν), (1.6)

where Nu and Nl are the number density of molecules in the upper and lower energy states of the

transition; Aul, Bul and Blu are the Einstein coefficients, and φi,ν is the frequency profile given by the

velocity distribution of either energy state. At the radio frequencies, a Maxwellian distribution with the

same temperature can describe the velocity distribution of all energy states, then it can be assumed that

φu,ν = φl,ν = φν. The Einsten coefficients satisfy the relations Aul/Bul = 2hν3
ul
/c2 and Blu/Bul = gu/gl,

where gi is the statistical weight of the different levels, and the number density per sub-level is ni =

Ni/gi. Thus, from these relations and using equations 1.5 and 1.6, the source function S ν becomes
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S ν =
2hν3

ul

c2

(

nl

nu

− 1

)−1

. (1.7)

Therefore, the level population of the molecular gas needs to be known in order to solve the equation

of radiative transfer. In the case of the molecular gas in the CSEs of AGB stars, the solution of the radia-

tive transfer equation depends on the distribution of the level population of all the radiative transitions

of a particular molecular species, whereas for the dust it depends on the optical properties (absorption,

emission and scattering) of the grains considered for a particular model. Within the LTE frame, the

distribution of level population of the molecular species is determined by the kinetic temperature of the

gas, and the solution of the radiative transfer equation is straightforward. Nevertheless, most detailed

radiative transfer models including the effects of cooling (e.g. adiabatic expansion, diffuse emission)

and heating (e.g. momentum exchange between gas and dust) processes, which certainly affects the

intensity of the emergent radiation field, are needed in order to constrain physical parameters such as

temperature and density distribution in the CSEs.

The most reliable numerical solutions of the equation of radiative transfer are those which includes the

Monte-Carlo method. It is widely used in mathematics and physics in order to solve complex systems

which include large set of parameters. It is characterized by the random variation of one or more

input parameters which are iterated until their convergence. For the CSEs of AGB stars, the Monte-

Carlo method is implemented to calculate the temperature distribution of the dust as well as the level

population of a particular molecular species, for a given temperature of the central star and a density

distribution of the CSE. In the most general case the central star is assumed to radiate as a black body

with a given temperature (although there are codes that include more exact stellar spectra). Then, the

energy of the model photons per unit frequency range is defined according to the energy distribution of

the radiation field produce by a source at such temperature. The model photons, which are basically

energy packages per unit frequency range, are simulated to propagate throughout the CSE. The density

distribution of the gas and dust in the CSEs is an input of the model, and it can be defined as a function of

one, two or the three spatial variables (1-D, 2-D and 3-D models). In the general case, the propagation of

the model photons is tracked throughout the CSE. The interaction points are randomly chosen according

to a probability function, and at each interaction point the energy of the model photons is changed due

to absorption or stimulated emission accordingly to the Monte-Carlo method. In addition, the new

direction of propagation is randomly chosen at each interaction point. In general, the local emission

is assume to be isotropic, and the propagation of the model photon can be in any direction from a

interaction point. In the case of dust, detailed models use a probability function which depends on the

scattering properties of the dust species under study to calculate the new propagation direction of the

model photon after each interaction. The propagation of the model photons is tracked until either it

leaves the CSE or all its energy is diluted by multiple interactions with the CSE material. Then, the

propagation of the next model photon is simulated. After each model photon, the level population of the

gas is obtained. After a number of photons simulated, if the level population is essentially unchanged
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from one model photon to the next, the process ends and the radiative transfer equation is solved for the

obtained level population. In the case of dust, is the thermal equilibrium between the stellar radiation

field and the temperature of the grains what determines the convergence.

In this thesis, a full-3D radiative transfer code was used to simulate the CO molecular line emission

towards the CSEs of AGB stars. The code, Line modelling engine (LIME; Brinch and Hogerheijde

2010), designed for the prediction of line and continuum emission from astrophysical sources such as

dense cores in star forming regions, and molecular envelopes, is a reliable tool to model the molecular

emission towards CSEs without restriction on the adopted geometry. The results of the models are

presented in Chapter 7.

1.5 Aims of this thesis

Within the general scenario of the study of the evolution of low- and intermediate-initial-mass stars, the

search for an explanation that suits mass-loss process and the kinematics of the ejected mass from fun-

damental principles has became the main goal of observational, theoretical and computational efforts.

Observational studies of thermal CO line emission are considered one useful method to constrain the

mass-loss history and the density distribution of the molecular gas formed from the material ejected

during the AGB phase. However, a number of assumptions have to be done in order to draw conclusions

from the observed spectral features within a yet large uncertainty range. In this specific context, one of

the questions addressed in this thesis is: What is the maximum degree of asymmetry of the CSEs that

can be properly modelled assuming a spherically symmetric source?

In Chapter 7 I present the results of LIME modelling of CO line emission assuming different morpholo-

gies for the CSEs, from the typical spherical symmetric to oblate ellipsoids.

On the other hand, a high percentage of sources evolving along the PN phase display non-spherical

symmetric CSEs. Among the wide range of observed shapes, sources displaying axisymmetric mor-

phologies have been detected, not only along the PN phase, but also along the post-AGB phase. Since

the energy necessary to develope collimated outflows exceeds the energy provided by radiation pres-

sure of the stellar radiation field on the ejected material, a number of mechanism have been proposed

in order to explain the formation of such morphologies. However, there is no general agreement up to

date. In this context, part of the research in this thesis is focussed on the study of the role of the stellar

magnetic field on the formation of collimated high-velocity outflows. This study was carried out using

interferometric observations of water fountain sources. The results of the observations are presented in

Chapters 5 and 6.

One of the methods used for the study of the magnetic field towards the CSEs of AGB and post-AGB

stars relies on the detection of polarized maser emission. Since there are non-Zemman effects which

can mimic or enhance the polarization state of the maser radiation, part of the research in this thesis

is focussed on the study of the polarization properties of SiO, H2O and HCN maser emission. The

question addressed in this particular study is: What is the maximum fractional linear polarization that
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can be detected at the ALMA frequency range, which can be truly related to the presence of magnetic

field in region where the maser emission is generated? The results of this study are presented in Chapter

4.
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CHAPTER 2

Maser emission

In order to generate maser emission from a particular rotational transition, it is necessary to produce

an inversion of population of the energy levels involved in the radiative transitions. Then the maser is

generated by stimulated emission which amplifies the intensity of the incoming radiation field. Such

inversion of population requires a pumping mechanism, which basically creates an unstable distribution

of energy where the population of the upper level exceeds the population of the lower level of a given

transition. The main pumping mechanism depend on the molecule, and its efficiency depends on the

density of the region where the maser emission is produced. It can be radiative or collisional (or a

combination), and the energy levels involved in the rotational transition are just a small part of a complex

cycle which includes a number of different rotational and vibrational transitions within the scheme

of energy levels of a particular molecular species (Elitzur 1992; Cohen 1989). Besides the pumping

mechanism, maser emission requires velocity coherence within the emitting gas. That is, the velocity

gradient along the amplification path cannot be larger than the Doppler shifting defining the maser

emission linewidth. In the most general frame, maser emission is generated by stimulated emission

between two energy levels. Within the basic two-levels maser emission frame the equation of transfer

that describes the variation of the intensity (Iν) is

dIν

ds
= −κνIν + ǫν, (2.1)

where the absorption (κν) and the emission (ǫν) terms are function of the number density of molecules

in the lower (Nl) and upper (Nu) energy state, the linewidth function (∆φ), and the Einstein coefficients

for spontaneous emission and both absorption and stimulated emission (Aul, Blu, Bul)
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2 Maser emission

κν =
hν

4π
φ(ν)(NlBlu − NuBul), (2.2)

ǫν =
hν

4π
φ(ν)NuAul. (2.3)

The Einstein coefficients satisfy the relations

Aul =
2hν3

c2
Bul, glBlu = guBul. (2.4)

where gl and gu are the statistical weights of the lower and upper states, respectively. Replacing κν

and ǫν in Eq. 2.1 and assuming that the two levels of the transition have the same statistical weight, i.e.

gu = gl, then the radiative transfer equation becomes

dIν

ds
=

hν

4π
φ(ν)
[

(Nu − Nl)BulIν + NuAul

]

. (2.5)

Therefore, if for any reason the population of the upper level exceeds the population of the lower state,

the medium acts like an amplifier rather than an absorber. As mentioned before, the maser transition

is one among a complex cycle of radiative emission and absorptions throughout different rotational and

vibrational levels of a particular molecular specie. Therefore, the description of the radiative transfer

of maser emission must be generalized including gains and losses due to population exchange with

other radiative levels which do not interact directly with the maser radiation. Thus, by including the

pumping rates Riν and the decay rate Γi we can describe the interaction of the maser levels with all the

other transitions. The line shape function φ(ν) describes the line shape of the emission, and because

the particle motions, the frequency of a given transition is shifted into the interval [ν, ν + dν] due to

the Doppler effect. The population of the levels that are not involved in the maser are unaffected by

the maser transitions, then their corresponding frequency distributions can be expected to follow the

Doppler profile. This assumption allow us to write the pump rates into the interval [ν, ν + dν] as Riν =

Riφ(ν). The rate equations for the level population of the states generating the maser are given by

∂Nuν

∂t
= −(Nuν − Nlν)BulJν − NuνAul + Ruν − ΓuNuν − (NuνCul − NlνClu), (2.6)

∂Nlν

∂t
= (Nuν − Nlν)BulJν + NuνAul + Rlν − ΓlNlν − (NlνClu − NuνCul), (2.7)

where Jν is the angle-averaged intensity given by Jν =
∆Ω
4π Iν; Cul and Clu are the collision rates for

excitation and de-excitations that parametrize the collision rate with different molecular species than the

molecule producing the maser. In addition, the decay rate (Γi) is defined as the inverse lifetime of the

masers states. In the steady-state case, both Eq. 2.6 and Eq.2.7 are zero. Defining the population per
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sub-level as niν = Niν/gi, and adding Eq. 2.6 and Eq. 2.7 lead to define the overall level population of

the maser system as a function of both the pump rate per sub-level (Pi = Ri/gi) and the decay rate

nν ≡ nuν + nlν =
(Pu + Pl)φ(ν)

Γ
= nφ(ν), (2.8)

where we have assumed that Γu = Γl ≡ Γ and that the degeneracy of both levels are the same,

i.e. gu = gl ≡ g. Neglecting the effects of the collisions exchanges and diffuse radiation caused by

spontaneous emission, it is possible to derive the level population difference (∆nν) from Eq. 2.6 and Eq.

2.7 as a function of both the pump and decay rates

∆nν =
(Pu − Pl)Γ

−1

1 + 2BulJν/Γ
φ(ν)

=
(Pu − Pl)Γ

−1

1 + Jv/Js

φ(ν),

=
∆n

0

1 + Jν/Js

φ(ν), (2.9)

where Js has been defined as the ratio between the decay rate and the stimulated emission coefficient,

i.e. Js ≡ Γ
2Bul

, and ∆n
0
= (Pu − Pl) Γ

−1.

If spontaneous emission is considered, then a factor of (A21/Γ) will appear in Eq. 2.9, and because the

spontaneous emission rate is far to small compared to the decay rate for astronomical masers, A21 ≪ Γ,
the effects on the population level of diffuse radiation can be neglected. On the other hand, considering

the collision rates, a factor (C21/Γ) will also appear in Eq. 2.9. In this case, when the collision rate

are larger than the decay rate, the inversion of population is expected to be destroyed, and the maser

cannot operate. Then, in order to have an efficient pump mechanism to create the inversion of the level

population, it is necessary to have collision rates such that Γ > C21. Moreover, because the term Jν/Js

in Eq. 2.9, the level population difference depends also on the intensity of the maser radiation.

The efficiency of the pumping mechanism can be parametrized using equations 2.8 and 2.9

η =
Pu − Pl

Pu + Pl

=
∆n

0

n
. (2.10)

Thermal lines requires that Pl > Pu, while for maser emission Pu > Pl is necessary.

From the expression for the population difference (Eq. 2.9) and the Eq. 2.2, it is possible to write κν,

which no longer describes absorption but amplification, as

κν =
κ

0ν

1 + Jν/Js

, (2.11)

where
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κ
0ν =

hν

4π
∆n

0
guBulφ(ν). (2.12)

The dependence on the intensity is retained in Eq. 2.11 with the parameter Jν. Moreover, the depen-

dence of the amplification on the intensity of the maser is scaled by Js. In the limit case Jν ≪ Js, both

the population difference ∆nν and the gain κν are independent of the intensity of the maser radiation

(Eq. 2.9 and Eq. 2.11). This is the so called unsaturated maser regime. Therefore, the solution of the

radiative transfer equation in the frame of unsaturated maser emission (Jν ≪ Js) can be written as

Iν(s′) =
(

Iν(0) +
ǫν

κ
0ν

)

eκ0ν s′ − ǫν
κ

0ν
. (2.13)

where it is clear that the intensity of the maser increases exponentially with distance traveled within

the maser region. In the unsaturated frame regime, κν ∝ ∆n
0
= nη, which indicates that the gain of un-

saturated masers depends on the efficiency pumping mechanism. Then, a small change on the parameter

η implies strong variability of the outcoming intensity of the maser radiation.

For sufficiently long paths, the beam-average intensity Jν eventually exceeds Js, which naturally pre-

vents infinite energy flux. In this case, the maser radiation is saturated, and both the gain and the

population difference are affected by the intensity of the maser radiation. Therefore, in the limit case

Jν ≫ Js, the gain is given by κν = κ0ν
Js

Jν
, and with Jν =

∆Ω
4π Iν, the transfer equation becomes

dIν

ds
= κ0νJs

4π

∆Ω
+ ǫν. (2.14)

Then, since the beaming angle ∆Ω ≈ π s2

r2 , integrating Eq. 2.14 between s′ and s′′

Iν(s′′) = Iν(s′) +
4

3
κ0νJs

(s′′ 3 − s′ 3)

r2
+ ǫν(s′′ − s′). (2.15)

Therefore, once the beamed-averaged intensity becomes important, the intensity of the maser in-

creases linearly with the path length, and the maser radiation is said to be saturated.

Maser spectra are characterized by very intense emission features with narrow line widths, high vari-

ability and polarization. The line profile is determined by the gain along the amplification path and

whether the emission is unsaturated or saturated. Assuming that the line profile function φ(ν) is Gaus-

sian, then in the unsaturated regime the exponential gain towards the center of the line is higher than

the amplification of the radiation towards the wings of the line. Therefore, the spectral features of un-

saturated masers are more narrow than the typical thermal line profile of the same molecular transition.

If the amplification path is long enough, the gain becomes linear as the emission saturates. Then, the

emission towards the center of the line profile is not longer favored, and the line is then re-broadened.

The upper limit for the re-broadened is the thermal linewidth of the studied transition.
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2.1 Polarization: Overview

The polarization state of an electromagnetic wave is given by the oscillation of the electric field vector

~E in a plane perpendicular to the direction of propagation (~k) of the electromagnetic field. If the wave

propagates along the direction of the z-axis, then the electric vector ~E = (Ex, Ey) is given by

Ex = Excos(ωt − δx), (2.16)

Ey = Eysin(ωt − δy), (2.17)

where Ex,y and δx,y are the amplitude and phase of each component. In general the electric field vector

traces out an ellipse in the x-y plane. Therefore the general polarization state of electromagnetic waves

is elliptical. Two special cases of polarization are generated when the amplitudes of each component are

the same and the phase difference are either ±π/2 or zero. In the former case, when the phase difference

∆δ = δx − δy are ±π/2, the electric vector traces a circle in the x-y plane while the electromagnetic

wave propagates. This is the case of circular polarization, where the electric field vector rotates in the

clockwise (∆δ = −π/2) or in the counter-clockwise (∆δ = π/2) direction around the z-axis, defining the

rotation direction from the point of view of the source. On the other hand, when the phase difference is

zero, the electric field moves along one direction in the x-y plane, which is the case of linear polarization.

In general, an emitting gas generate random polarized states such that, when averaged, results in an

unpolarized radiation field. If for any reason the emission of radiation with a specific polarization state

is enhanced, then the radiation field, after averaging, displays a fraction of its total flux being polarized.

Circumstellar maser radiation is often found to be polarized. The detection of polarized maser emission

is linked via the Zeeman effect to the presence of a magnetic field in the region where the maser radiation

is generated (Cohen 1989). Polarization depends on the response to the presence of a magnetic field of

the molecular species producing the maser radiation. In absence of magnetic fields, all the magnetic

sublevels of a given energy state with angular momentum J have the same frequency. The energy

degeneracy of the magnetic sublevels is lifted when a magnetic field is applied; this is the Zeeman

effect. The number of magnetic sublevels of quantum number m of an energy level is 2J + 1, and the

allowed transitions have ∆m = mu − ml = 0,±1. Depending on the transitions between the sublevels,

the polarization state detected is either circular or linear. Transitions with ∆m = 0 produce linear

polarized emission (π-component), while ∆m = ±1 (σ-components) generate circular polarization. The

σ-components of the line corresponds to clockwise (right-handed) or counter-clockwise (left-handed)

circular polarization.

The Zeeman frequency (gΩ), which is the frequency shift between the magnetic sublevels caused by a

magnetic field, depends on the electronic structure of the studied molecular species. For open electronic

shells molecules (radicals) such as OH, the Zeeman frequency is expected to be of the order of, or even

larger than the intrinsic linewidth of the emission line ∆ω (linewidth without Zeeman splitting). In the
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particular case of OH, a magnetic field of a few mG can shift the frequency of the magnetic sublevels

such that the Zeeman frequency is larger than the intrinsic linewith of the maser line. Therefore, strong

circular polarization is usually measured in the spectral features of OH maser emission.

The case of closed shell molecules such as SiO and H2O is rather complicated. These are molecules

with no net electronic angular momenta, and the response to a magnetic field is far too weak compared

to the OH, for instance. The Zeeman frequency gΩ is expected to be smaller than the intrinsic linewidth,

thus circular polarization is rarely detected. On the other hand, spectral features with fractional linear

polarization are usually measured, although its interpretation needs to be carefully drawn. The case

of SiO and H2O polarized maser emission is addressed in chapter 4, where I present the results of the

calculations of the fractional linear polarization observable in the (sub-)millimeter wavelength range.

2.1.1 Stokes parameters

The polarization properties of astronomical sources depends on the amplitude and phase of the com-

ponents of the electric field vector, but non of them are measurable quantities. On the other hand, the

polarization is in general a fraction of the total flux detected. Therefore, it is necessary to link the po-

larization properties of an observed signal, i.e. intensity, linear and circular polarization degree, and

polarization angle; with values that can be extracted from the observations (Thompson, Moran and

Swenson 2001). In observational astronomy, such link is done by the Stokes parameters. The Stokes

parameters describe the polarization properties of a partially polarized electromagnetic field. If the com-

ponents of the electric field vector are given by the equations 2.16 and 2.17, with the amplitudes and

phases as a function of time, i.e., Ex,y(t) and δx,y(t), then

I =< E2
x(t) > + < E2

y(t) >,

Q =< E2
x(t) > − < E2

y(t) >,

U = 2 < E2
x(t) E2

y(t) cos(δx(t) − δy(t)) >,

V = 2 < E2
x(t) E2

y(t) sin(δx(t) − δy(t)) >, (2.18)

where the angular brackets denotes average on time. The four parameters are the measure of total

intensity (I), linear polarized components along the x and y axis (Q,U), and the circular polarized

component (V) of the detected radiation field. These parameters have units of flux density (or intensity)

and their magnitudes can be used to know the polarization state of the detected radiation field. The linear

and circular polarized fraction, as well as the angle of polarization are function of the stokes parameters
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pl =

√

Q2 + U2

I
,

pc =
V

I
,

pt =

√

Q2 + U2 + V2

I
,

Θ =
1

2
tan−1

(

U

Q

)

, (2.19)

where pl and pc are the fraction of linear and circular polarization respectively, pt is the total polarized

emission and Θ is the angle of polarization of the linear polarized component. In the particular case of

circumstellar maser emission, and generally in astronomy, pt ≤ 1.

The Stokes parameters lead to an accurate understanding of the polarization properties of the studied

radiation field. In the context of circumstellar maser emission, the detection of fractional polarization is

related to the presence of a magnetic field permeating the region in the CSEs where the maser emission

is generated. Then, the fractional polarization detected can be used to determine the polarization state of

the maser radiation in order to constrain the magnetic field morphology and strength. The morphology of

the magnetic field can be constrained measuring the fractional linear polarization of the maser radiation

pl and its polarization angle Θ, which is related to the projection of the magnetic field lines on the plane

of the sky. The strength of the magnetic field can be calculated using the fractional circular polarization

of the maser emission. Thus, the spatial distribution of the magnetic field energy can be determined

from observations of maser emission arising from different locations in the CSEs. Therefore, the energy

of the magnetic field can be constrained and compared with the kinetic energy of the gas and dust

components of the CSEs, and then, determine if the magnetic pressure is large enough to dominate the

shaping of the CSEs of (post-)AGB sources.
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CHAPTER 3

Radio observations of circumstellar envelopes

of AGB stars

3.1 Observing the molecular gas towards CSEs

The wavelength range for the study of molecular gas in the CSEs of AGB and post-AGB stars covers

from the far-infrared (λ > 100 µm), where the high energy rotational transitions are detected, up to

the centimeter wavelengths where the ground-state OH maser emission is observed. The atmospheric

opacity (Fig. 3.1) is not a critical factor for observations at the centimeter wavelengths. In contrast,

the high amount of precipitable water vapor (PWV) that the Earth atmosphere contains severely affects

observations at (sub)millimeter wavelengths.

At the radio frequencies, the CSEs are detected through emission lines. At millimeter and submillime-

ter wavelengths, observations are possible only in few wavelengths bands where the absorption of the

incoming signal is relatively low. In order to minimize the atmospheric effects on the incoming signal,

telescopes operating at the submillimeter are typically located at very dry places, in deserts or at the

summit of mountains at altitudes > 2500 m above the sea level. The Atacama Pathfinder EXperiment

(APEX) telescope located in Chile, at 5100 m above the sea level, the James Clerk Maxwell Telescope

(JCMT) at ∼ 4100 m in Hawaii, and the IRAM-30 m telescope in Spain, are powerful single-dish

telescopes available for observations of line emission towards CSEs of late-type star at submillimeter

wavelengths.

The extended and dense CSEs of AGB and post-AGB stars are characterized by low temperatures,

typically below 1000 K. As discussed above, the molecular gas content of the CSEs of AGB stars

is dominated by H2, but because of its lack of electric dipole moment, it is not excited throughout

the cold CSEs. In contrast, CO is easily excited at the typical temperatures of CSEs within a wide

range of densities. The different rotational transitions of CO are excited throughout almost the entire
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Figure 3.1: Top Atmospheric opacity for the entire electromagnetic spectrum. Bottom Atmospheric transmision at

submillimeter wavelengths for two different values of the PWV for a place located at 2400 m above the sea level.

Images adopted from NASA and Arizona Radio Observatory.

CSEs, up to distances where the H2 shielding and CO self-shielding are not longer efficient. The CO

rotational transitions are excited by collisions with H2 molecules. High energy CO rotational transitions

trace regions close to the central star, while the low energy CO rotational transition (J = 1 − 0, J =

2 − 1) trace large-scale regions. In principle, it is possible to trace the column density (number of

molecules in a column of a given surface area) of the molecular gas and its kinetic temperature using

radio observations of CO line emission. The brightness distribution of different rotational transitions

of CO gives information about the gas expansion velocity, mass-loss rate of the central source, and

large-scale distribution of the molecular gas. In fact, it has been shown that combining observations

of different CO rotational transitions with radiative transfer models of the detected line is one of the

most reliable methods to constrain the mass-loss rate of a particular source (e.g Ramstedt et al. 2008).

Observations of the brightness temperature distribution are limited by the angular resolution provided

by single-dish radio telescopes. The beam width of radio telescopes is given by

θb = 50′′
[

100 GHz

ν

] [

15 m

d

]

, (3.1)

where d is the diameter of the telescope. Typically, the CSEs of AGB stars are extended sources, but

in most of the cases the angular resolution provided by telescopes like JCMT and APEX, for instance,

is not enough to resolve the CSEs.

30



3.1 Observing the molecular gas towards CSEs

Figure 3.2: Schematic overview of the beam pattern of a radio telescope.

By observing and resolving molecular line emission, for instance CO emission throughout an ex-

tended object such as the CSEs of AGB stars, some physical properties of the observed source can be

constrained. However, the determination of such properties are restricted by the observation itself, and

whether the observed emission is uniform through the telescope beam (extended source) or not (point-

like source). The observed flux density is a function of the sensitivity of the telescope and its variation

over the telescope beam. If an antenna with normalized response pattern Pn(θ, φ) is pointed towards

a source with brightness distribution given by Bν(θ, φ), then the incoming power per unit frequency

interval detected by the antenna is given by

Pν =
Ae f f

2

∫

4π

Bν(θ, φ) Pn(θ, φ) dΩ, (3.2)

where Ae f f is the effective area of the antenna. The spectral distribution of a source emitting as a

black body is given by

Bν(T ) =
2hν3

c2

1

exp(hν/kT ) − 1
, (3.3)

that in the Rayleigh-Jeans limit (hν ≪ kT ) becomes

Bν(ν,T ) =
2ν2

c2
kT. (3.4)

Therefore, in the radio frequency range the brightness of a source which is considered in thermody-

namic equilibrium, is proportional to its thermodynamic temperature, the so called brightness tempera-
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ture TB

TB =
c2

2 kν2
Bν =

λ2

2k
Bν. (3.5)

In radio telescopes, the detected power per unit of frequency interval is compared with the power

generated by thermal noise produce by the electronics of the detector. The temperature required to

generate a signal with power per unit frequency equal to that of the incoming signal is called antenna

temperature. It is relevant to estimate signal-to-noise ratios, but in general, it does not have a physical

meaning related to the source. However, in the Rayleigh-Jeans limit the antenna temperature can be

written as Pν = kTA. Thus, replacing this in Eq. 3.2

Ta =
Ae f f

2k

∫

4π

Bν(θ, φ) Pn(θ, φ) dΩ. (3.6)

Then, by combining Eq. 3.5 and Eq. 3.6, and given that the effective area of the antenna is Ae f f =

λ2/∆Ωa, it is possible to write

Ta(θ0, φ0) =
1

∆Ωa

∫

4π

TB(θ, φ) Pn(θ − θ0, φ − φ0) dΩ, (3.7)

where the integral is calculated over the solid angle subtended by the source. Eq. 3.7 can be solved

only if the response pattern of the telescope Pn(θ, φ) is well known for all the directions covered by

the telescope beam. On the other hand, the equation of transfer as a function of the temperature in the

Rayleigh-Jeans limit is

dTB(s)

dτν
= Tbk(0) − T (s), (3.8)

where T (s) is the temperature of the medium interacting with the radiation of a given background

source with temperature Tbk. The solution of Eq. 3.8 is

TB = Tbk(0) e−τν(s) + T (1 − e−τν(s)). (3.9)

Hence, the brightness temperature distribution is a function of the optical depth of the source, and TB

corresponds to its thermodynamic temperature only in the limit of large optical depth, i.e, for optically

thick sources. Therefore, in the case of an extended source (∆Ωs ≫ ∆Ωa) whose brightness distribution

is uniform through the telescope beam, the antenna temperature can be related to the thermodynamic

temperature of the source at a location where τ ≈ 1 by solving Eq. 3.7, but only if the emission detected

is optically thick. As mentioned above, in the case of the CSEs of AGB stars with high mass-loss

rates (e.g. Ṁ > 10−7 M⊙ yr−1), the excitation of the CO rotational transitions observable at millimeter

and submillimeter wavelengths is mainly due to collisions with H2. Thus if the velocity distribution

of the of the gas is determined by its temperature, the level population of CO can be described by a

Boltzmann distribution at the kinetic temperature of the gas if all the molecular levels are thermalized.
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A particular rotational transition is thermalized if the number of collisions exciting the upper level is

in equilibrium with the radiative transition de-exciting it. In that case, the excitation temperature Tex,

defined as the temperature that describes the population ratio between the upper and the lower levels of

a particular transition, can be expected to be the kinetic temperature of the gas. However, to constrain

the density and temperature distribution from radio observations towards the CSEs of AGB stars is

more complicated. The spectral lines observed, whose shapes are in general used as a first diagnostic

of the density and temperature distribution of the observed source, are the result of a complex interplay

between the stellar radiation field and all the different molecular species and dust particles that the CSEs

comprise. Effects such as cooling by line emission, heating by collisions, adiabatic expansion, shocks,

clumps, collimated outflows, photodisociation, etc., increase the size of the parameter space needed to

solve consistently the equation of transfer, which in turns increase the degeneracy of the results. In

Chapter 7 we present the results of simulated radio observations towards synthetic AGB sources. This

study is our first approach to the problem of molecular line emission towards asymmetric CSEs of AGB

stars whose oblate morphologies can be the result of the onset of collimated outflows.

3.2 Radio interferometry: Overview

Observation of the CSEs of AGB and post-AGB stars aims to unveil the spatial distribution of density

and temperature of the gas and dust within large and small spatial scales. For instance, observations of

maser emission require high-spatial resolution, lower than tenths of seconds-of-arc accuracy, in order to

truly identify the different maser spots and their relative location throughout the CSEs. Such outstanding

resolution is provided by radio interferometers; ensemble of pairs of antennae spread around distances

from a few tens of meters up to kilometers distances.

The distance between a pair of antennae is called the baseline, and the angular resolution observable

by a pair of antennae follow the relation 3.1, but instead of the dish diameter D, it depends of the

baseline length B. For an antennae array, the primary beam (the beam width of a single antenna of the

array) defines the observable field-of-view. The longest baseline defines the highest angular resolution

that the array can discern, while the shortest baseline defines the large scales that the array is able to

resolve. The observational technique used by interferometers such as the Australia Telescope Compact

Array (ATCA) (Fig. 3.3), the Jansky Very Large Array (JVLA), the Submillimeter Array (SMA), and

the Atacama Large (sub-)Millimeter Array (ALMA) is known as Aperture synthesis. For a single-dish

radio telescope, its response to the incoming signal is given by the product of the Fourier functions

describing the source brightness distribution and the aperture shape, or beam of the antenna. The same

principle applies for radio interferometers, but the response to the incoming signal is a function of the

separation between each pair of telescopes of the array. In addition, due to the rotation of the Earth,

the response of the interferometer is also function of time. This is because baseline length as seen from

the point of view of the source changes as the Earth rotates. In the particular case of a two antennae

array located in the East-West direction, when a source rises or sets, the separation of the two telescopes
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Figure 3.3: Interferometers: The Australia telescope compact array (ATCA) (top left), The JVLA (top right) and

ALMA (bottom). Credits: ATNF, NRAO, ALMA(ESO,NAOJ,NRAO), O. Dessibourg.
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seen from the source is small, whereas when the source is at its highest position on the sky, the baseline

seen from the source is larger. The aperture synthesis technique consist on the cross correlation of the

brightness distribution of a source on the plane of the sky I(x, y), and the response of the array as a

function of the separation of the antennae measured in a coordinate system with orthogonal axis (u,v),

the so called uv-plane. The response of each pair of antennae is a complex function called Visibility,

which is related to the sky brightness distribution by the Fourier transform

V(u, v) =

"
I(x, y)e−2π i (ux+vy)dxdy. (3.10)

The visibility provided for a pair of antennae is then a point on the uv-plane. Due to the Earth ro-

tation, and depending on the period of time tracking the source, the visibility of each pair of antennae

corresponds to a set of discrete points forming arcs in the uv-plane. Therefore, a key factor of the aper-

ture synthesis technique is the coverage of the uv-plane. The ideal case is to have an uniform coverage.

In such case, the response of the interferometer when all the visibilities measured are synthesized will

correspond the response of a single telescope with an aperture size given by the longest baseline. How-

ever in practice, the uv-plane is never entirely filled.

The Fourier transform of a single visibility function is a fringe pattern where the distance between two

consecutive maxima is determined by the distance between the two antennae. Each pair of antennae of

the array provides a visibility function, which is characterized by an amplitude and phase equal to the

amplitude and phase of the fringe pattern. Large baselines produce high spatial frequency fringe pattern,

while short baselines produce low spatial frequency patterns. In the case of a point-like source, which

is basically a source with angular size smaller than the synthesized beam, the fringe pattern observed is

essentially the same despite the baseline length. But in the case of sources with angular size larger than

the synthesized beam (extended sources) the maxima in the fringe pattern are not longer coincident for

different baseline lengths. In other words, a pair of antennas linked by a baseline of length B will be sen-

sitive only to a particular spatial frequency. High spatial frequencies corresponds to small angular scales,

and large angular scales correspond to low spatial frequencies. Hence, the inverse Fourier transform of

the synthesis of the visibilities for well sampled uv-plane, enables us to retrieve most of the brightness

distribution of the observed source, with the consequent improvement on the spatial resolution.

Besides the outstanding spatial resolution that interferometric observations provide, the sensitivity

level is also enhanced. The signals detected by a pair of antennae is translate into voltages V1 and

V2. In the context of the so-called phase-switching technique, the phase of the signal of one of the

antennae is periodically reversed. Then, after combining the signals from both antennae, the output

signal alternates between (V1+V2)2 and (V1−V2)2. A synchronized device takes the difference between

the two outputs, which is 4(V1 · V2). Hence, the intensity of the measured signal is proportional to the

multiplication (correlation) of the original signals averaged over a given time; that is, the total power

detected is proportional to the cross-correlation of the two signals, which makes interferometers to be

much more sensitive than the single-dish telescopes that comprise it.
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Interferometric observations of circumstellar maser emission provide unique data for the study of

the spatial distribution of individual maser spots as well as of their spectral features, when individual

maser spots are resolved, of course. The sensitivity that can be achieved by interferometric observations

leads to the detection of maser spectral features with outstanding spectral resolution, which enable us to

determine the polarization state of the spectral features detected with exceptional signal-to-noise ratios.

However, a number of effects which are originated either by the propagation of the polarized signal

through dense regions between the source and the receiver, or by the instrumentation of the detector

itself, can modify the original polarized signal. For sources with angular size comparable with the syn-

thesized beam, the magnitude and position angle of the vector of polarization vary for different spatial

scales. Therefore, the synthesized beam might smooth the polarization of the source, which is known

as beam depolarization.

As the polarized emission propagates through dense regions permeated by magnetic fields located be-

tween the source and the receiver, the position angle of the vector of polarization rotates. This phenom-

ena is known as Faraday rotation. Faraday rotation throughout the CSEs, the interstellar medium and

the Earth ionosphere depolarize the detected signal. The Faraday depolarization reduces the intrinsic

polarization of the observed source though its effects decreases towards higher frequencies. Those ef-

fects related to the instrumentation and the atmosphere are eventually corrected in the calibration stage,

before the detected polarized signal is used for science.

Observations of polarized emission are generally performed using either linear or circular polarized

feeds on each antenna of the array. These feeds are sensitive to orthogonal linear or circular polariza-

tion. In the case of linear polarized feeds, the receivers are named as X and Y , with the X feed aligned

along the elevation axis of the telescope beam, and the feed Y rotated 90 degrees. Thus, interferometric

observations with full polarization are carried out correlating all the four combinations XX, YY , XY and

YX for all baselines of the array.

The response of the receivers of an antenna of the array can be represented by the product of different

effects related to the receiver system. Each of such effects are expressed in terms of the Jones matrices.

Using the Jones formalism, the response of the antenna i with linear polarized feeds is

Ji = GiDiPi, (3.11)

where Gi, Di and Pi are the Jones matrices for the gain, leakage and the parallactic angle, which have

the form

Gi =















giX 0

0 giY















, (3.12)

Di =















1 diX

diY 1















, (3.13)
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Pi =















cosχ −sinχ

sinχ cosχ















, (3.14)

where χ is the measure of the rotation of the feeds seen from the point of view of the source whilst

the antenna tracks the source; the parallactic angle, given by

χ = tan−1
(

cos(l) sin(h)

sin(l) cos(δ) − cos(l) sin(δ) cos(h)

)

, (3.15)

where h is the source hour angle, δ is the source declination, and l is the latitude of the antenna. The

response of the interferometer, i.e., the output of the correlation of the visibilities is a function of the

outer product of the individual Jones matrices, multiplied by a vector characterizing the detected signal

R = (Ji ⊗ J∗k ) S Vs, (3.16)

where J∗
k

represents the complex conjugate of Jk; Vs is vector of the Stokes visibilities (Iv,Qv,Uv,Vv)

which are the complex visibility for the distribution of the the Stokes parameters over the source, and

S is a 4×4 transformation matrix from the Stokes parameters to the polarization coordinates of the

antennae, given by

S =
1
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(3.17)

where j =
√
−1. Thus, in the limit of weakly polarized source, as expected for maser radiation, and

nearly perfect feeds, higher order terms involving instrumental and source polarization can be neglected.

Hence, the response to the polarized radiation in terms of the Stokes visibilities on baseline i→ k is

RXX =
1

2
giXg

∗
kX(I + Q cos(2χ) + U sin(2χ)), (3.18)

RXY =
1

2
giXg

∗
kY ((diX − d∗kY )I − Q sin(2χ) + U cos(2χ) + jV), (3.19)

RYX =
1

2
giYg

∗
kX((d∗kX − diY )I − Q sin(2χ) + U cos(2χ) − jV), (3.20)

RYY =
1

2
giYg

∗
kY (I − Q cos(2χ) − U sin(2χ)). (3.21)

After the correlation, the output signal enter in the calibration stage. It includes the correction of

instrumental polarization, the calibration of the polarization angle, where observations of source with

known polarization state are used. After calibration, the final step will be to determine the fractional po-

larization and the angle of polarization associated to the different spectral features. Calibration software
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like CASA, MIRIAD and AIPS are the most used for calibration and reconstruction of the final image

of the source.
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CHAPTER 4

Maser Polarization

Once ALMA full polarization capabilities are offered, it will become possible to perform detailed studies

of polarized maser emission towards star-forming regions and late-type stars, such as (post-) asymptotic

giant branch stars and young planetary nebulae. To derive the magnetic field orientation from maser

linear polarization, a number of conditions involving the rate of stimulated emission R, the decay rate

of the molecular state Γ, and the Zeeman frequency gΩ need to be satisfied. We used a radiative transfer

code to calculate the fractional linear polarization as a function of the emerging brightness tempera-

ture for a number of rotational transition of SiO, H2O and HCN that have been observed to display

maser emission at submillimetre wavelengths. We assumed typical magnetic field strengths measured

towards galactic star-forming regions and circumstellar envelopes of late-type stars from previous VLBI

observations. Since the Landé g-factors have not been reported for the different rotational transitions

we modelled, we performed our calculations assuming conservative values of the Zeeman frequency for

the different molecular species. Setting a lower limit for the Zeeman frequency that still satisfies the

criteria gΩ > R and gΩ > Γ, we find fractional polarization levels of up to 13%, 14% and 19% for

the higher J transitions analysed for SiO, H2O and HCN, respectively, without considering anisotropic

pumping or any other non-Zeeman effect. These upper limits were calculated assuming a magnetic field

oriented perpendicular to the direction of propagation of the maser radiation. According to our results

SiO, H2O and HCN maser emission within the ALMA frequency range can be detected with suitable

linear polarization to trace the magnetic field structure towards star-forming regions and late-type stars

even if the detected polarization has been enhanced by non-Zeeman effects. The contents of this chapter

originally published in the A&A jounal (Pérez-Sánchez and Vlemmings 2013).

Polarized maser emission has been detected towards the expanding CSE of late-type stars such as

(post-) AGB stars and young planetary nebulae (e.g. Alves et al. (2012), Amiri et al. (2012), Leal-

Ferreira et al. (2012), Vlemmings, Humphreys and Franco-Hernández (2011), Vlemmings et al. (2006)).
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Both single-dish and interferometric observations have revealed that SiO, H2O, HCN, (OH), among

others, can naturally generate polarized maser emission in these enviroments (e.g. Vlemmings et al.

(2006), Surcis et al. (2011a), Fish and Reid (2007b), Herpin et al. (2006), Kemball et al. (2009)). In

particular, interferometric observations of the masers at radio wavelengths have become a useful tool

for studying the magnetic field around late-type stars (e.g. Fish and Reid (2007a), Amiri, Vlemmings

and van Langevelde (2010)). At shorter wavelengths, new instruments will enable the study of maser

radiation from higher vibrationally-excited rotational transitions. In particular, the Atacama Large Mil-

limeter/submillimeter Array (ALMA) has recently started the first scientific observations. Soon all of

its capabilities, including polarimetry, will be available, providing more than an order of magnitude im-

provement in sensitivity and resolution. In the ALMA frequency range, a number of SiO, H2O and HCN

maser transitions that belong to vibrationally-excited levels up to v = 3 can be detected. The population

inversion of rotational states belonging to different molecular species, or within different vibrational

levels of a particular species, depends on the physical conditions of the emitting regions. By observing

the maser polarization at different frequencies towards an extended source, we can hence constrain the

magnetic field properties, i.e. field strength and/or direction, throughout large regions within the ob-

served source. According to the Zeeman interpretation, the maser polarization strongly depends on the

ratio between the Zeeman frequency (gΩ), the rate of stimulated emission (R), and the rate of the decay

of the molecular state (Γ). The Zeeman splitting induced by a magnetic field depends on the molecule’s

shell structure. For example, since SiO, H2O and HCN are non-paramagnetic, closed-shell molecules,

gΩ is expected to be less than the intrinsic line width ∆ω. Maser polarization theory (e.g Western and

Watson (1984)) predicts fractional linear polarization (pL) levels of up to 100% for J = 1 − 0 rotational

transitions of diatomic molecules. These polarization levels can be reached in the presence of a mag-

netic field of a few Gauss in, for example, the SiO masing region in CSEs of late-type stars. But in the

case of higher rotational transitions (i.e. J = 2−1, J = 3−2, etc.) theory predicts that unless anisotropic

pumping is involved, the fractional linear polarization should decrease as the angular momentum num-

ber of the involved state increases. Before the observed maser polarization can be related to an intrinsic

magnetic field, it is necessary to evaluate the ratios between the maser parameters R, gΩ and Γ for each

single rotational transition detected with angular momentum higher than J = 1. Here, we determine if

the polarized maser radiation produced by molecular transitions of SiO, H2O and HCN in the ALMA

frequency range could generate detectable levels of fractional linear polarization, while still satisfying

the criteria (gΩ > R and gΩ > Γ) for which the polarization direction is still directly related to the

magnetic field. These maser transitions can then be used to infer the magnetic field structure towards

SFRs and in the CSEs of (post-) AGB stars. To do this, we have run numerical models adapted from

Nedoluha and Watson (1992) to calculate the fractional linear polarization level that can be generated

by the interaction of the molecular states of SiO, H2O and HCN in the ALMA frequency range, with a

magnetic field in the masing region.
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4.1 Maser polarization theory

4.1 Maser polarization theory

Polarized maser radiation provides a unique tool for studying the role of magnetic fields inside high-

density enviroments such as star-forming regions and circumstellar envelopes of evolved stars. Although

the general maser emission mechanims from astronomical sources have been well understood through-

out the past thirty years (e.g. Elitzur (1992), Gray (2012)), the generation and radiative transfer of po-

larized maser emission have been difficult to deal with. The polarization properties of maser emission

strongly depend on the radiative conditions of the region where the maser is being generated (saturated

or unsaturated) and on the nature of the molecular species generating the maser emission (paramagnetic

or non-paramagnetic) (Watson 2008, Dinh-v-Trung 2009).

Maser-polarized radiation can be produced in both unsaturated and saturated frames. Maser emission

is considered to be saturated when the rate for the stimulated emission R overcomes the decay rate of

the molecular state involved, Γ. In this case, the growth of the possible polarization modes is deter-

mined by the population of the molecular states that can interact with a particular mode of the polar-

ization (Nedoluha and Watson 1990a). Goldreich, Keeley and Kwan (1973) first identified two regimes

where polarized emission can be generated in the saturated frame for the molecular rotational transition

J = 1 − 0: a) The strong magnetic field strength regime, where the Zeeman frequency gΩ ≫ R and

gΩ ≫ Γ; and b) The intermediate magnetic field strength regime, where (gΩ)2/Γ ≫ R ≫ gΩ.

Western and Watson (1984), Deguchi and Watson (1990) and Nedoluha and Watson (1990a) extended

the treatment of Goldreich, Keeley and Kwan (1973), solving the radiative transfer equations for po-

larized radiation as a function of the emerging intensity R/Γ, i.e. as a function of the saturation level.

They considered linear, non-paramagnetic molecules, including the rotational transitions J = 2 − 1 and

J = 3 − 2. Nedoluha and Watson (1990a) have shown that in the presence of a plausible magnetic field

and without differences in the population of the magnetic substates involved in the maser emission, the

upper limit of fractional linear polarization pL that maser transitions other than J = 1 − 0 can achieve is

33%. The fractional linear polarization decreases for transitions with higher angular momentum, and is

a function of the angle θ between the magnetic field (~B) and the direction of the maser radiation (~k).

Molecular states with angular momentum higher than J = 1 − 0 reach their maximum pL value when

the magnetic field lines are perpendicular to the direction of the propagation of the maser radiation, and

have pL = 0 when θ has the critical value θcr ∼ 55◦, also known as the van Vleck angle, and when

θ = 0◦.

The angle φ between the polarization vector and the plane ~k · ~B also varies as a function of the ratio

gΩ/R. For a fixed θ, the vector of polarization should be either perpendicular or parallel to the ~k · ~B
plane if the condition gΩ ≫ R is satisfied. On the other hand, for higher values of R, but still in the

intermediate-strength magnetic field regime, the vector of polarization is already rotated away from the

~k · ~B plane, i.e. if R > gΩ the vector of polarization is neither parallel nor perpendicular to the plane

~k · ~B. In this context, the van Vleck angle is the limit for θ where the polarization vector changes from

being parallel to be perpendicular to the ~k · ~B plane. Therefore, as long as the conditions gΩ > R and
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gΩ > Γ are satisfied, the information about the morphology of the magnetic field can be extracted from

the polarization vector.

Observationally, fractional linear polarization of up to 100% for J = 1 − 0 SiO maser transitions

(Amiri et al. 2012) and values higher than 33% for SiO molecular transitions involving higher angu-

lar momentum states (e.g Vlemmings, Humphreys and Franco-Hernández 2011) have been detected.

Anisotropic pumping seems to be a possible process to explain such high pL levels (Nedoluha and Wat-

son 1990a). It can be produced by differences in the angular distribution of the radiation field involved in

the population inversion process. In the absence of a magnetic field, anisotropic pumping could produce

highly linearly polarized emission. In contrast to the effect of a magnetic field alone in the maser region,

the fractional linear polarization can increase with the angular momentum due to an anisotropic pop-

ulation of the involved magnetic substates. Nevertheless, even considering that the linear polarization

has been enhanced by anisotropic pumping, if gΩ > R and gΩ > Γ for the detected line, the magnetic

field structure can still be traced directly from the polarization vector, because the magnetic field is the

dominant axis of symmetry (Watson 2002). The study of magnetic fields from maser linear polarization

thus depends critically on an analysis of the Zeeman frequency gΩ and the stimulated emission rate R.

4.2 Maser emission in the ALMA frequency range

4.2.1 SiO

Strong SiO emission arises from the innermost regions of the CSE of late-type stars, and a number of

maser transitions have been detected in vibrational levels of up to v = 4, with rotational transitions as

high as J = 8 − 7 (Menten et al. (2006), Humphreys (2007) and references therein). The most common

SiO maser transitions detected are the two lowest rotational transitions of the v = 1 vibrational level,

peaking around 43 GHz and 86 GHz (e.g. Barvainis and Predmore 1985). The list of SiO rotational

transitions, including the isotopologues 29SiO and 30SiO, which can be observed as maser emission in

the ALMA frequency range, are listed in Table 4.1 (Müller et al. 2001).

Polarized SiO maser emission has been detected towards oxygen-rich (post-)AGB stars. Barvainis and

Predmore (1985) reported the detection of strong polarized emission in the rotational transitions J = 1−0

and J = 2 − 1, of both v = 1 and v = 2 vibrational levels.

Fractional linear polarization levels between 15% and 40% are commonly detected, though levels ap-

proaching 100% have also been reported (e.g. Barvainis and Predmore (1985), Kemball and Diamond

(1997), Amiri et al. (2012)). Shinnaga et al. (2004) and Vlemmings, Humphreys and Franco-Hernández

(2011) reported the detection of high fractional linear polarization levels (pL ≥ 40%) of the J = 5 − 4

rotational transitions of the v = 1 vibrational level, towards the supergiant VX Sgr. Such high polar-

ization levels cannot only be explained by the presence of a large-scale magnetic field permeating the

masing region, but need to be enhanced by non-Zeeman effects.
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4.2.2 H2O

At submillimetre wavelengths a number of molecular transitions of H2O have been detected display-

ing high flux density values and narrow line shapes characteristic of maser emission lines (Waters et

al. (1980), Menten et al. (1990), Yates and Cohen (1996)). The submillimetre water maser transitions

within the ground-vibrational state have been detected towards CSEs of O-rich late-type stars as well as

from low- and high-mass SFRs, either tracing shocked regions or arising from the steadily expanding

CSEs (e.g. Ivison, Yates and Hall (1998), Melnick et al. (1993)). The different water transitions observ-

able in the ALMA frequency range within the ground-vibrational state and the v2 = 1 bending mode

are listed in the Table 4.2.The rotational maser transitions within the vibrationally excited level v2 = 1

are thought to arise from regions where the physical conditions are similar to those that invert the level

population of the SiO rotational transitions (Alcolea and Menten 1993).

In contrast to the case of SiO, there are not many references in the literature reporting the detection of

H2O maser polarized radiation in the ALMA frequency range. To date, only (Harwit et al. 2010) have

succeeded in measuring linear polarization of water maser radiation at 620.7 GHz. Unfortunately, the

very low atmospheric transmission around 621 GHz prevents the detection of this maser transition from

ground-based telescopes.

The excitation conditions of the submillimetre water masers seem to be a subset of the broad excitation

conditions generating the 22.2 GHz maser line (Neufeld and Melnick (1991), Humphreys (2007)). The

dominating pumping process depends on the characteristics of the region where the maser emission

arises; either from post-shock regions, where the inversion of the population of the molecular states is

mainly collisional, or from the steadily expanding CSEs, where the pumping process is mainly thought

to be caused by infrared photons of warm dust emission. Observations of 22.2 GHz H2O maser po-

larized emission have been used to probe the magnetic field strengths within the steadily expanding

CSEs of AGB and supergiant stars (e.g. Vlemmings, van Langevelde and Diamond 2005). In addition,

polarized water maser emission has been detected towards the high-velocity outflows of the so-called

water-fountains, with spectral features displaying high levels of fractional linear polarization (pL > 5%)

and unusually broad velocity ranges. These observations have probed magnetically collimated "jets"

that appear during the post-AGB phase, and are thought to be the precursors of bipolar (multipolar)

planetary nebulae (Vlemmings, Diamond and Imai (2006), Pérez-Sánchez, Vlemmings and Chapman

(2011)).

4.2.3 HCN

Strong HCN maser emission has also been detected towards the CSEs of several carbon-rich (C-rich)

AGB stars in the ALMA frequency range (e.g. Bieging (2001), Schilke and Menten (2003)). Table 4.2

summarizes the different HCN transitions that can be observed as maser emission in the submillimetre

wavelength regime (Müller et al. 2001). Linearly polarized HCN maser emission of the 89.087 GHz,

J = 1 − 0 transition, within the (0,20,0) vibrationally excited state, has been detected at approximately
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20% towards the innermost region of the CSE of the C-rich star CIT 6 (Goldsmith et al. 1988). The

masing region is thought to be located between the photosphere and the inner radius of the expanding

envelope, similar to the SiO masers in the oxygen-rich late-type stars. Anisotropies in the population

inversion of the masing transitions might affect the fractional linear polarization, but more observations

are needed to determine the exact cause of the polarization.

4.3 Model results

Maser emission can be affected by several non-Zeeman processes that can enhance or even produce

linear and/or circular polarization, such as anisotropic pumping or the change of the quantization axis

along the amplification path (Wiebe and Watson 1998). Therefore, it is necessary to solve the radiative

transfer equation for a particular rotational transition to learn whether the polarization detected can be

correlated to a large-scale magnetic field permeating the masing region. Furthermore, it is necessary

to determine if the involved rotational transition can produce appreciable levels of pL when the quan-

tization axis is defined by the magnetic field direction, i.e. when the Zeeman frequency gΩ is higher

than the stimulated emission rate R. The inequalities gΩ > Γ and gΩ > R allow us to analyse the po-

larization observed in terms of the ordinary population of the magnetic substates (Watson 2008). In the

case of SiO the decay rate Γ listed in Table 4.3 corresponds to the rate for the radiative decay from the

first vibrationally excited state to the ground-vibrational state (Nedoluha and Watson 1990a). For water,

this value is roughly the inverse lifetime for infrared transitions of the 22 GHz, H2O maser transition

(Nedoluha and Watson 1990b). In the case of HCN, this value corresponds to the decay rate associated

to a pumping process dominated by infrared radiation (Goldreich and Kwan 1974).

Considering the Γ and gΩ values in Table 4.3, it is clear that for the case of interest the criterium

gΩ > Γ is satisfied. To evaluate whether the stimulated emission rate satisfies the condition gΩ > R for

a particular transition when pL is sufficiently large to be detected, we have used a radiative transfer code

adapted from Nedoluha and Watson (1992) and Vlemmings (2002). The stimulated emission rate R is

given by

R ≈ AkTb∆Ω

4πhv
, (4.1)

where A is the Einstein coefficient of the involved transition, which is calculated and listed for most

of the transitions in Tables 4.1 and 4.2; k and h are the Boltzmann and Planck constant, v is the maser

frequency, Tb is the brightness temperature and ∆Ω is the relation between the real angular size of the

of the masing cloud and the observed angular size.

Although the quantities Tb and ∆Ω are related to the observed intensity of the maser, it is a difficult

task to constrain their value directly from observations. Brightness temperatures of up to ∼ 1015 K have

been measured for water masers in SFRs, whereas estimated values for ∆Ω are ∼ 10−1 − 10−2 sr for wa-

ter masers detected towards the CSEs of late-type stars (Richards, Elitzur and Yates (2011), Vlemmings
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Table 4.1: Spontaneous emission coefficient and frequencies of the detected SiO maser transitions in the ALMA

frequency range

28SiO 29SiO

v Ju − Jd Freq A ALMA v Ju − Jd Freq A ALMA

(GHz) (s−1) band (GHz) (s−1) band

0 1 - 0 43.42386 3.036×10−6 1 1 - 0 42.87992 2.114×10−8 1

2 - 1 86.84699 2.915×10−5 2 2 - 1 85.75906 2.460×10−7 2

1 - 0 43.12208 3.011×10−6 1 0 3 - 2 128.63685 9.696×10−7 4

2 - 1 86.24344 2.891×10−5 2 4 - 3 171.51255 2.532×10−6 5

3 - 2 129.36326 1.045×10−4 4 5 - 4 214.38548 5.334×10−6 6

1 4 - 3 172.48102 2.569×10−4 5 6 - 5 257.25493 9.869×10−6 6

5 - 4 215.59592 5.131×10−4 6 3 - 2 127.74849 3.350×10−4 4

6 - 5 258.70725 9.003×10−4 6 1 4 - 3 170.32807 8.745×10−4 5

7 - 6 301.81430 1.445×10−3 7 6 - 5 255.47849 3.407×10−3 6

1 - 0 42.82059 2.986×10−6 1 2 6 - 5 253.70317 1.11139 6

2 - 1 85.64046 2.866×10−5 3

3 - 2 128.45881 1.036×10−4 4 30SiO

2 4 - 3 171.27507 2.547×10−4 5 1 - 0 42.373426 2.016×10−8 1

5 - 4 214.08848 5.088×10−4 6 0 2 - 1 84.746170 2.346×10−7 2

6 - 5 256.89831 8.927×10−4 6 5 - 4 211.853473 5.081×10−6 6

7 - 6 299.70386 1.433×10−3 7 1 4 - 3 168.323352 8.054×10−4 5

1 - 0 42.51938 2.951×10−6 1 2 4 - 3 167.160563 2.542×10−1 5

3 3 - 2 127.55521 1.027×10−4 4

4 - 3 170.07057 2.525×10−4 5

5 - 4 212.58248 5.044×10−4 6

4 5 - 4 211.07784 4.986×10−4 6
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Table 4.2: Einstein coefficient and frequencies of the detected H2O and HCN maser transitions at submillimetre

wavelengths.

H2O HCN

Ju − Jd Freq A ALMA Ju − Jd Freq A ALMA

(GHz) (s−1) band (GHz) (s−1) band

313 - 220 183.31012 3.629×10−6 5 1 - 0 88.631602 1.771×10−7 2/3

1029 - 936 321.22564 6.348×10−6 7 v2 = 20

515 - 422 325.15292 1.166×10−5 7 1 - 0 89.0877 1.483×10−4 2/3

17413 - 16710 354.8089 1.096×10−5 7 2 - 1 177.2387 4.578×10−5 5

753 - 660 437.34667 2.212×10−5 8 v2 = 11c

643 - 550 439.15081 2.857×10−5 8 3 - 2 267.1993 2.262×10−4 6

642 - 551 470.88895 3.534×10−5 8 4 - 3 354.4605 6.122×10−4 7

v2 = 1 v2 = 4

440 - 533 96.26116 4.719×10−7 3 9 - 8 804.7509 - 10

550 - 643 232.68670 4.770×10−6 6 v1 = 11 → v2 = 40

661 - 752 293.6645 - 6 10 - 9 890.761 - 10

110 - 101 658.00655 5.568×10−3 9

Table 4.3: Fixed parameter values assumed in our numerical models.

Molecule g Γ gΩ1G B ∆Ω

(s−1) (s−1) (G) (sr)

SiO 0.155 5 1480.96 1 10−2

H2O 0.65 1 6226.22 0.05 10−2

HCN 0.098 1 957.8 1 10−2
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and van Langevelde (2005)), and in some cases ∆Ω ∼ 10−5 sr for the masers detected towards SFRs

(Nedoluha and Watson 1991).

The fractional linear polarization increases with Tb∆Ω in the presence of a magnetic field as long as

θ , θcr. Since R increases faster than pL when Tb∆Ω increases, the polarization vector of linearly polar-

ized maser radiation detected with high brightness temperature does not necessarily satisfy the criterium

gΩ > R, and thus cannot always be directly correlated with the direction of the magnetic field lines, un-

less the emitted radiation has a high degree of beaming. On the other hand, low brightness temperatures

might result in very low or undetectable values of fractional linear polarization. Furthermore, the value

of Tb∆Ω scales with the ratio R/Γ, and higher values of the molecular decay rate Γ imply a lower level

of fractional linear polarization for the same Tb∆Ω value. This reflects the dependence of the fractional

linear polarization level of a particular rotational transition on the saturation level of the maser radiation.

The Zeeman frequency gΩ determines the energy-splitting of the magnetic sub-levels. In a masing re-

gion permeated by a constant magnetic field parallel to the z-axis of the coordinate system, the energy-

shifting of the magnetic sub-levels is given by ~gΩm/2 = gµN Bm, where µN and m are the nuclear

magneton and the quantum number of the magnetic substate (Nedoluha and Watson 1990a). Hence the

values for gΩ can be estimated using the relation

gΩ =
2gµN

~

B[G]

1 × 104
, (4.2)

where the factor 1 × 104 originates from the conversion between the units of Tesla and Gauss. In

general, the molecular Landé factor (g) is different for each magnetic sub-level. The data in the literature

are very limited, and there are no reported g-factor values for all the different rotational transitions of

HCN nor H2O. The Landé g-factor for SiO has minor differences (less than 1%) for the v = 0, v = 1

and v = 2 vibrational transitions (Landolt-Börnstein 1982). The assumed g-factors for the different

molecules are listed in Table 4.3. In the case of H2O, Nedoluha and Watson (1992) calculated the gΩ

values considering hyperfine splitting for the 616 and 523 rotational states of water. Nevertheless, in the

present case, we have assume the lower limit suggested for g as it would be without hyperfine splitting

(Kukolich 1969), to calculate gΩ for the different H2O rotational transitions that we modelled. For HCN

we assumed the lower g factor value reported for the (0,11c ,0) vibrational state, which corresponds to a

magnetic field parallel to the molecular symmetry axis (Goldsmith et al. (1988) and references therein).

Because for closed-shell, non-paramagnetic molecules the response to a magnetic field is weak, we

consider the g-factor values listed in Table 4.3 as a conservative choice to constrain a minimum value

for gΩ for the different molecular species. The gΩ values presented in Table 4.3 correspond to B= 1 G

in Equation 4.2, and can be scaled according to magnetic field strengths reported for the different masing

regions in both SFRs and CSEs of (post-)AGB stars.

Single-dish observations have revealed average magnetic field strengths of ∼ 3.5 G in the SiO maser

region, whereas for H2O the measured values range between 100−300 mG for the CSEs of AGB and

supergiant stars, and between 15−150 mG at densities of nH2
= 108 − 1011 cm−3 in SFRs. For our
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Table 4.4: Model results: Values of pL assuming θ = 90o and gΩ = 10R for rotational transitions of the v =

1 vibrational state of SiO and the ground-vibrational level of H2O. For HCN, the J = 1 − 0 belongs to the

vibrationally excited v2 = 2o state, whereas the higher J transitions listed are from the v2 = 11c vibrationally

excited level

SiO H2O HCN

Ju − Jd pL Ju − Jd pL Ju − Jd pL

1−0 ∼0.32 313 - 220 ∼0.19 1−0 ∼0.33

2−1 ∼0.23 515 - 422 ∼0.16 2−1 ∼0.27

3−2 ∼0.18 643 - 550 ∼0.15 3−2 ∼0.22

4−3 ∼0.15 4−3 ∼0.19

5−4 ∼0.14

6−5 ∼0.13

models we assumed the values of the magnetic field strength listed in Table 4.3. This allows us to

analyse our results as a function of the minimum gΩ values for the three molecular species modelled.

Thus, using Equation 4.2 for the corresponding magnetic field in Table 4.3, we calculate the gΩ in order

to determine whether the inequality gΩ > R is satisfied or not.

4.4 Analysis

4.4.1 SiO maser

We present the results of our models for the SiO rotational transitions J = 5 − 4 and J = 2 − 1 of

the v = 1 vibrational state in Figure 4.1. The results are for four different θ values and the vertical

line corresponds to a Tb∆Ω where gΩ = 10R. The ideal case of θ = 90o determines the maximum

fractional linear polarization value when a magnetic field permeates the masing region. The maximum

fractional linear polarization for rotational transitions of the first SiO vibrationally excited state are listed

in Table 4.4. These upper limits were established using the corresponding gΩ value listed in Table 4.3

for each molecular species, and subsequently finding the Tb∆Ω values where gΩ = 10R. According to

our results, it is possible to generate pL values of up to 13% for the J = 5 − 4 rotational transition, and

of up to 23% for the J = 2− 1 rotational transition without consideration of non-Zeeman effects (Figure

4.1), while the much higher values of pL detected for the SiO masers require anisotropic pumping.

Therefore, although anisotropic pumping has a strong impact on the fractional linear polarization level,

submillimetre SiO maser features observed with brightness temperatures < 109 − 1010 K fulfil gΩ > R

and could in principle be used to trace the structure of the magnetic field permeating the SiO masing

region.
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4.4 Analysis

Figure 4.1: Fractional linear polarization as a function of Tb∆Ω for the 215 GHz, J = 5−4 (top), and the 86.2 GHz,

J = 2−1 (bottom) SiO rotational transitions within the v = 1 vibrational level for four values of the angle between

the magnetic field lines and the direction of propagation of the maser radition, θ, using the parameters listed in

table 4.3 for SiO. Positive and negative pL values mean that the vector of polarization is either perpendicular or

parallel the magnetic field lines projected on the plane of the sky. The vertical line sets the Tb∆Ω value such that

gΩ = 10R.
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Figure 4.2: Fractional linear polarization as a function of Tb∆Ω for the 183 GHz, 313−220 (top), and the 325 GHz,

515−422 (bottom) H2O rotational transitions, both within the ground-vibrational level, for four values of the angle

between the magnetic field lines and the direction of propagation of the maser radiation, θ. We considered the

magnetic field strength and decay rate listed in table 4.3 for H2O. Positive and negative pL values mean that the

vector of polarization is either perpendicular or parallel the magnetic field lines projected on the plane of the sky.

The vertical line sets the Tb∆Ω value such that gΩ = 10R.
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Figure 4.3: Fractional linear polarization as a function of Tb∆Ω for J = 1 − 0, v1 = 20 rotational transition (top),

and three HCN rotational transitions of the vibrationally excited state v1 = 11c (bottom), assuming a magnetic field

oriented perpendicular to the direction of propagation of the maser radiation. We considered the magnetic field

strength and decay rate listed in table 4.3 for HCN. Under these assumptions, the vertical lines set the maximum

linear polarization that the different maser lines can reach satisfying the condition gΩ = 10R.

4.4.2 H2O maser

To determine the level of fractional linear polarization that water maser transitions can reach when the

masing region is permeated by a large-scale magnetic field, we ran numerical models of the rotational

transitions within the ground-vibrational state, using the assumptions described in section 4.4.1, together

with the corresponding parameters in table 4.3. The results are presented in Table 4.4. In Fig. 4.2 we

present the results for the 183 GHz and 325 GHz lines for four different θ values. Our results suggest

upper limits for fractional linear polarization of up to 19% and 16% for the 183 GHz and 325 GHz lines,

respectively. Therefore, considering the values we assumed for the input parameters listed in Table 4.3,

maser features with 108 K< Tb < 1011 K can produce observable fractional linear polarization levels

that can be used to determine the magnetic field morphology. However, if Tb is larger, the observed

polarization direction will be rotated away from the projected magnetic field direction on the plane of

the sky.

4.4.3 HCN maser

In Table 4.4 we present our results for the maximum fractional linear polarization that the v2 = 20,

J = 1 − 0 rotational transition and higher J transitions within the v2 = 11c vibrational state can produce.
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Table 4.5: Sensitivity values at the different maser frequencies of SiO, H2O and HCN within the ALMA frequency

range. The σ listed corresponds to the sensitivity achieved after 1h of on-source time, with 0.1 km/s for a source

that reaches a maximum elevation of 59◦.

SiO H2O HCN

v σ v σ v σ

(GHz) (mJy) (GHz) (mJy) (GHz) (mJy)

86.243 4.58 183.310 38.37 89.0877 4.49

129.363 4.32 325.153 39.58 177.238 4.97

172.481 4.74 439.151 59.25 267.199 4.12

215.596 3.63 354.461 4.99

258.707 4.76

In Figure 4.3 we show our results assuming a magnetic field oriented perpedicular to the direction of

propagation of the maser radiation, and the parameters listed in table 4.3 for HCN. Fractional linear

polarization of up to ∼ 33% can be generated in the case of the J = 1 − 0 rotational transition for

gΩ = 10R. This value decreases for rotational transitions with higher J values, as expected. The values

of TbΩ scale with R/Γ, and consequently, lower Γ values will increase the fractional polarization level

that a particular rotational transition can reach while still satisfying gΩ > R. Nevertheless, according

to our results, HCN maser emission towards C-rich AGB stars can be generated with high fractional

polarization values within the gΩ > R regime. Thus, the vector of polarization detected from HCN

maser observations could be used to probe the magnetic field structure around C-rich AGB stars, even

if the level of polarization has been enhanced by non-Zeeman effects.

4.5 Observing maser polarization with ALMA

The temperature and density conditions that favour the population inversion of different masing molecules

in SFRs and CSEs of (post-) AGB stars are not the same. Most problably these conditions also differ for

different rotational transitions. Therefore, detecting polarized maser emission from multiple rotational

transitions and from multiple molecular species with ALMA will enable us to trace the magnetic field

structure throughout extended regions around those sources. The accuracy of the ALMA polarimetry

will allow us to detect polarized emission of 0.1 % of the detected Stokes I. Therefore, fractional lin-

ear polarization can be detected in short observations with very good signal-to-noise ratios. To probe

whether the measured polarization of a maser traces the magnetic field permeating the masing region,

it is necessary to calculate the brightness temperature of the spectral feature and evaluate if the product

Tb∆Ω satisfies the inequality gΩ > R for the observed emission. For detected spectral features it is

possible to constrain Tb by considering the equation

Tb

[K]
=

S (v)

[Jy]

( Σ2

[mas2]

)−1
ζv, (4.3)
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where S (v) is the detected flux density, Σ is the maser angular size and ζv is a constant factor that

includes a proportionality factor obtained for a Gaussian shape (Burns, Owen and Rudnick 1979). It

scales with frequency according to the relation

ζv = 6.1305 × 1011
( v

GHz

)−2 mas2

Jy
K. (4.4)

We calculated the rms value at the different maser frequencies that we modelled using the ALMA

sensitivity calculator for an array of 50 12-m antennas. The results are presented in Table 4.5 and

correspond to observations of 1 h of on-source time with 0.1 km/s of spectral resolution. To estimate

the brightness temperature from observations that do not resolve individual features, it is necessary to

assume a value for the size of the masing region generating the spectral feature. VLBI studies have re-

vealed masers to be very compact spots with typical sizes of 1 AU. Based on observed peak-flux density

values for maser emission of SiO, H2O and HCN, assuming a size of 1 mas, i.e. a source distance of

1 kpc, we here give a few examples of potential ALMA observations of maser polarization.

SiO masers: SiO maser emission has been reported displaying flux density values between 7.4 Jy and

64 Jy (Shinnaga et al. 2004) for the v = 1, J = 5−4 rotational transition. Moreover, Barvainis and Pred-

more (1985) reported flux density values between 210 Jy and 625 Jy for the SiO J = 2 − 1 rotational

transition of the same vibrationally excited state. As an example, we investigate the detection of a maser

spectral feature with a peak-flux density of 10 Jy of the SiO J = 5 − 4 (v = 1) rotational transition. For

these values, Equation 4.3 gives Tb = 1.32× 108 K. Comparing this with the Tb∆Ω value, which corre-

sponds to the limit of gΩ = 10R (Figure 4.1), maser emission with beaming angles ∆Ω < 2.84× 10−1 sr

will have a linear polarization that can be used to trace the magnetic field direction. But usually SiO

maser spectra exhibit blended components. If this is the case, the flux density observed corresponds to a

number of maser spots with similar line-of-sight velocities increasing the observed S (v). Therefore, the

brightness temperature derived using Equation 4.3 could be overstimated, but still could be used to set

an upper limit value for Tb. To reach the regime where gΩ > R, it is necessary to associate a ∆Ω value

to the brightness temperature derived from the S (v) of the blended components. Hence, since individual

maser spectral features might have lower Tb than the blended feature which contains it, even unbeamed

maser radiation could still place the linear polarization detected within the regime where gΩ > R is

satisfied.

Finally, according to the ALMA sensitivity calculator, a 5σ detection of 1% of fractional linear polariza-

tion of SiO maser emission with low peak-flux densities (few tens of Jy/beam) requires short on-source

observation time (t < 1 h).

H2O masers: Submillimetre H2O lines have been detected with flux densities from a few tens to sev-

eral thousands of Jy. For the minimun peak-flux density (243 Jy/beam) reported for the 183 GHz by

(van Kempen, Wilner and Gurwell 2009), the brightness temperature we obtain using Equation 4.3 is
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Tb = 4.43× 109 K. Hence, H2O maser emission detected with beaming solid angles ∆Ω ≥ 1.6× 10−3 sr

can generate fractional linear polarization levels higher than 1% (Figure 4.2), satisfying the condition

gΩ > R. The 1% of linear polarization level of the weakest 183 GHz maser feature detected by (van

Kempen, Wilner and Gurwell 2009) can be easily detected in very short integration times. Unfortu-

nately, many H2O maser lines are affected by the atmospheric PWV. For maser spectral features with

peak-flux densities of the order of 20 Jy/beam at 439.151 GHz, for instance, a 3σ detection of 1 % will

require ∼ 1 h of on-source observation time.

HCN masers: HCN J = 1 − 0, (v2 = 20) maser emission at 89.0877 GHz has been detected with

fractional linear polarization of 20% for a spectral feature with flux density of 38 Jy (Goldsmith et al.

1988). Furthermore, Lucas and Cernicharo (1989) reported the detection of HCN v2 = 11c maser emis-

sion with a peak-flux density ∼ 400 Jy at 177 GHz. Schilke, Mehringer and Menten (2000) reported the

detection of the vibrationally excited HCN (0400) J = 9−8 maser line near 805 GHz with a flux density

of ∼1500 Jy.

For emission reported by Goldsmith et al. (1988), assuming a magnetic field perpendicular to the prop-

agation of the maser radiation, 20% of fractional linear polarization corresponds to Tb∆Ω = 7.65 ×
105 K sr (Figure 4.3, top), which places the polarization detected in the regime where gΩ > R. On

the other hand, considering a spectral feature of S (v) = 38 Jy, Equation 4.3 gives Tb = 2.94 × 109 K,

implying a beaming angle of 2.6×10−4 sr, assuming a maser of 1 mas. A beaming angle ∆Ω ∼ 10−2 sr is

needed for this maser to satisfy gΩ ≥ 10R and be a realiable tracer of the magnetic field within the mas-

ing region. However, if the emission consists of a contribution from multiple maser spots, the brightness

temperature of the spectral feature will be overstimated, as discussed previously for blended SiO maser

lines. Finally, as in the case of SiO maser emission, 1 % of linear polarization could be observed with

very low rms values in short on-source observation times (Table 4.5).

4.6 Conclusions

We have run numerical models to calculate the fractional linear polarization pL of maser emission gen-

erated by the interaction of a magnetic field with the different rotational transitions of SiO, H2O and

HCN within the ALMA frequency range. The fractional linear polarization was calculated as a function

of Tb∆Ω, a quantity that can be related to the stimulated emission rate R of the involved transition.

Considering both the minimun value of the Landé g-factor for each molecular species and a suitable

magnetic field strength for the different masing regions, we found the maximum pL that the analysed

rotational transitions can reach while satisfying both conditions gΩ > R and gΩ > Γ. Meeting these

criteria allow us to use the detected vector of polarization as a tracer of the magnetic field in the masing

region, even if the polarization observed has been affected by non-Zeeman effects.

According to our results, SiO, H2O and HCN submillimetre maser emission can be detected with ob-

servable fractional polarization levels (> 1%) in the regime gΩ > R. But especially for the strongest
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masers, a careful analysis of the brightness temperature is needed to confirm that the maser polarization

is still in this regime. Thus, observing with ALMA full-polarization capabilities will enable us to use

polarized maser emission as tracer of the magnetic field structure towards SFRs and CSEs of (post-

)AGB stars. Depending on the maser spectral features detected, both the brightness temperature and the

beaming solid angle can be better constrained, leading to a more accurate determination of the direction

of the magnetic field in the masing region.
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CHAPTER 5

Water maser polarization of the water fountains

IRAS 15445−5449 and IRAS 18043−2116

We present the morphology and linear polarization of the 22-GHz H2O masers in the high-velocity

outflow of two post-AGB sources, d46 (IRAS 15445−5449) and b292 (IRAS 18043−2116). The obser-

vations were performed using The Australia Telescope Compact Array. Different levels of saturated

maser emission have been detected for both sources. We also present the mid-infrared image of d46

overlaid with the distribution of the maser features that we have observed in the red-shifted lobe of the

bipolar structure. The relative position of the observed masers and a previous radio continuum obser-

vation suggests that the continnum is produced along the blue-shifted lobe of the jet. It is likely due

to synchrontron radiation, implying the presence of a strong magnetic field in the jet. The fractional

polarization levels measured for the maser features of d46 indicate that the polarization vectors are

tracing the poloidal component of the magnetic field in the emitting region. For the H2O masers of

b292 we have measured low levels of fractional linear polarization. The linear polarization in the H2O

maser region of this source likely indicates a dominant toroidal or poloidal magnetic field component.

Since circular polarization was not detected it is not possible to determine the magnetic field strength.

However, we present a 3-σ evaluation of the upper limit intensity of the magnetic field in the maser emit-

ting regions of both observed sources. The contents of this chapter originally published in the MNRAS

journal (Pérez-Sánchez, Vlemmings and Chapman 2011).

Post-Asymtoptic Giant Branch (post-AGB) stars represent a very short phase in the evolution of

low and intermediate initial mass stars. During the post-AGB phase, the high mass-loss rate (10−7 −
10−4M⊙yr−1) observed at the end of the Asymtoptic Giant Branch (AGB) evolution decreases. Simulta-

neously, the effective temperature of the central star increases, while the circumstellar envelope (CSE)

slowly detaches from the star (see Habing and Olofsson (2003) for a review). The post-AGB phase
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ends when the central star is hot enough to ionize the material which was ejected from the AGB phase,

forming a new Planetary Nebula (PN) (e.g. van Winckel 2003). It is generally assumed that the mass-

loss process along the evolution in the AGB is spherically symmetric (Habing and Olofsson 2003).

However, a high percentage of PNe have been observed showing aspherical symmetries that include el-

liptical, bipolar or multipolar shapes. It is still not clear at what point in the evolution toward a PNe the

departure from the spherical symmetry starts and even more importantly, what the physical processes

involved to form the complex shapes observed are. Companion interactions, binary sources, magnetic

fields, fast and slow wind interaction, disks and a combination of these have been considered as the

main factors to shape PNe (e.g. Sahai, Morris and Villar (2011), Balick and Frank (2002) and refer-

ences therein).

Hydroxyl (OH) and Water (H2O) maser emission have been observed in the CSE of the progenitors of

the (pre-)PNe. Typically, for spherically symmetric CSEs, the double peak spectra of the OH masers

defines the most blue- and red-shifted velocities in the CSE with respect to the stellar velocity. The

velocity range of the H2O maser spectra is narrower than the OH velocity distribution, and the H2O

masers are confined closer to the central star. A class of post-AGB stars, the so called "Water Foun-

tains", is characterized by the detection of H2O maser emission over an unusually large velocity range

broader than the velocity range defined by the OH maser emission (Likkel and Morris 1988). Sources

with H2O maser velocity spread over a range of ≫ 100 km s−1 have been detected (e.g. Likkel and

Morris (1988), Deacon et al. (2007), Walsh et al. (2009), Gómez et al. (2011)). Those H2O masers have

been observed in regions where the interaction between the high-velocity outflow and the slow AGB

wind seems to be active, hence the H2O masers are probably excited in the post-shock region. Recent

infrared imaging of water fountains have revealed bipolar and multipolar morphologies (Lagadec et al.

2011). Vlemmings, Diamond and Imai (2006) have detected circular and linear polarization in the H2O

maser features along the jet of W43A, the archetypal water fountain. They found that the jets of W43A

are magnetically collimated. Therefore, the detection of polarized maser emission from water fountains

is useful to determine the role of the magnetic fields on the onset of wind asymmetries during the evo-

lution from AGB stars to aspherical PNe. Here we report the detection of linear polarization of 22-GHz

H2O maser emission from two water fountains d46 and b292 (IRAS 15445−5449, IRAS 18043−2116).

5.1 Observation and data reduction

The Australia Telescope Compact Array (ATCA) was used to observe the H2O maser emission from

d46 (IRAS 15445−5449) on 2006 November 28-30 using the 6B array configuration, and b292 (IRAS

18043−2116) on 2007 July 6-9 with the 6C array configuration. The full track of observations of

d46 was 8 hr, consisting of observations of the source interspersed with scans on the phase calibrator

1613−586. Later, b292 was observed over 16 hr, and likewise, its observations were interleaved with a

phase reference source, 1730−130. The primary flux calibrator source, 1934−638, was observed during

each observation program. The flux density of 1934−638 at 22.2-GHz was taken to be 0.81 Jy. Both
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Figure 5.1: The observed section of the H2O maser spectra for: d46 (IRAS 15445−5449), and b292 (IRAS

18043−2116). The velocity width of the spectra was limited by the bandwidth available at the ATCA at the

time of our observations. The observations were centered on the brightest emission peak.

observations were performed in full polarization mode, with rest frequency of 22.23508-GHz, using

4-MHz bandwidth with 1024 spectral channels, covering a velocity width ∼ 50 km s−1 and a velocity

resolution of 0.05 km s−1. Before starting the full observations, some snapshots were carried out, for

each source, to determine at what range of velocity the brightest emission occurred. As we could not

cover the entire velocity range, the observing bands were centered on the brightest emission peak.

The data reduction was performed using the MIRIAD package (Sault, Teuben and Wright 1995). After

flagging bad visibilities, the flux density for each phase calibrator was determined using the flux den-

sity of primary flux calibrator. We obtained flux densities of 1.83 Jy and 2.83 Jy for 1613−586 and

1730−130 respectively. Both sources were used to perform the polarization calibration as well as to

determine amplitude and phase solutions, which were applied to the corresponding target data set. For

polarization analysis, image cubes for stokes I, Q, U and V were created. The resulting noise level

in the emission free channels of the I cube of d46 was ∼ 37 mJy beam−1, whereas that of b292 was

∼ 13 mJy beam−1. The stokes I image cubes were analysed using the AIPS task SAD, which was used

to fit, channel by channel, all the components with peak flux densities higher than five times the rms

with two-dimensional Gaussians. Only those maser features found in at least five consecutive channels

were considered reliable detections. The Right Ascension and Declination for the maser features were

calculated as the mean position for each set of consecutive channels. Fig. 6.1 shows the H2O maser

spectra for both sources.
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Table 5.1: Maser features.

d46 (IRAS 15445−5449)

Peak Intensity RA DEC Vlsr PL χ

Feature (Jy beam−1) (15 48 X) (−54 58 X) (km s−1) (per cent) (deg)

1 11.662 19.4063 20.165 −137.6 4.1 ± 0.6 −73.0 ± 1.6

2 2.055 19.4064 20.155 −136.5 7.5 ± 0.7 −40.7 ± 4.6

3 0.909 19.4025 20.099 −129.9 – –

4 0.537 19.4086 20.090 −128.9 – –

5 5.021 19.3972 19.942 −123.8 – –

6 9.077 19.4032 20.069 −120.4 3.4 ± 0.9 −51.6 ± 13.1

7a 11.883 19.4038 20.083 −119.5 2.9 ± 0.5 −56.5 ± 4.8

8 10.334 19.4029 20.057 −116.1 8.3 ± 0.9 83.4 ± 2.7

9 0.351 19.3950 19.922 −114.9 – –

10 0.735 19.3736 19.363 −113.2 – –

11 0.820 19.4012 20.041 −110.8 – –

12 1.166 19.3994 19.997 −109.5 – –

13 1.380 19.3897 19.977 −108.4 – –

14 2.055 19.4011 20.011 −106.4 – –

15 1.619 19.3960 19.898 −105.3 – –

16 2.201 19.3564 19.933 −104.2 – –

17 2.606 19.3912 19.851 −102.8 – –

18 2.922 19.3598 19.889 −100.3 – –

19 7.142 19.3593 19.858 −98.6 – –

20 3.209 19.3601 19.824 −97.3 – –

b292 (IRAS 18043−2116)

Peak Intensity RA DEC Vlsr PL χ

Feature (Jy beam−1) (18 07 X) (−21 16 X) (km s−1) (per cent) (deg)

1 2.820 20.8484 11.845 44.7 – –

2 0.751 20.8485 11.891 47.7 – –

3 0.240 20.8500 11.886 54.3 – –

4a 11.206 20.8480 11.860 60.8 1.3 ± 0.2 −4.2 ± 4.9

5 10.821 20.8485 11.865 62.9 1.5 ± 0.2 −6.8 ± 7.3

6 0.942 20.8483 11.844 69.4 – –

7 0.500 20.8488 11.835 72.0 – –

8 1.023 20.8477 11.838 74.3 – –

9 0.667 20.8484 11.880 77.6 – –

10 0.163 20.8476 12.040 79.8 – –

a Reference features in figures 5.2 and 5.3

60



5.2 Results

Figure 5.2: H2O maser region of d46 (left) and b292 (right). The offset positions are with respect to the reference

position indicated in table 5.1 , which are the brightest maser spots in each region. The vectors show the polariza-

tion angle, whose length is scaled according the linear polarization fraction. The horizontal bar at the bottom of

each image sets 5 per cent (d46) and 1.5 per cent (b292) of linear polarization fraction.

5.2 Results

In Table 5.1, we present the results of the analysis of the H2O masers features of d46 and b292. We

list the peak intensity, the position as RA and DEC, LSR velocity (Vlsr), fractional linear polarization

(pL) and polarization angle (χ). In Fig. 5.2 we show a map of the H2O maser regions for both observed

sources. The size of each feature is scaled according to the peak intensity, the radial velocity is colour-

coded and the vectors show the polarization angles. We have identified twenty H2O maser features for

d46, with emission detected at velocities from −97.3 km s−1 to −137.6 km s−1, red-shifted respect to the

systemic velocity ∼ −150 km s−1 (Deacon et al. 2007). Fractional linear polarization has been detected

for five of the twenty features, particularly for the most blue-shifted features, with levels from 2.9 ± 0.5

per cent to 8.3 ± 0.9 per cent. No significant circular polarization was detected.

Ten H2O maser features have been identified in our observation of b292, with emission at velocities from

44.7 km s−1 to 79.8 km s−1. Deacon, Chapman and Green (2004) have derived the systemic velocity

of the source from the double-peaked 1665-MHz spectrum, obtaining a stellar velocity of 87.0 km s−1.

Thus, because of the limited bandwidth, our observation was restricted to blue-shifted velocities only.

Fractional linear polarization was detected only for the two brightest features. As presented in table

5.1, not only are the fractional linear polarization levels for both features almost the same, but so is the

polarization angle. As was the case for d46, no significant circular polarization was detected.
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Figure 5.3: The image in the left shows the position of the radio continuum emission (triangle with error bars)

(Bains et al. 2009), the OH position (star) and its uncertainty (arc) (Deacon, Chapman and Green 2004) with

respect to the H2O maser features that we have detected for d46. In the same way, the right image shows the OH

position (star with four peaks) and its uncertainty (arc) relative to the H2O maser features from our analysis for

b292

5.3 Discussion

5.3.1 d46 (IRAS 15445−5449, OH326.530−00.419)

Previous Observations

According to the MSX ([8−12],[15−21]) two-colour diagram, d46 has been classified as a highly-evolve

late post-AGB object (Sevenster (2002), Deacon, Chapman and Green (2004), Bains et al. (2009)). After

22-GHz H2O maser emission was detected with a velocity range beyond that of the OH masers, it was

classified as a water fountain source (Deacon et al. 2007).

Both main-line and 1612-MHz OH maser emission have been detected toward d46 (Sevenster et al.

(1997b), Deacon, Chapman and Green (2004)). Based on the irregular line profile of the three lines

detected, Deacon, Chapman and Green (2004) suggested that the source was likely a bipolar object,

since irregular OH maser profiles are associated with sources that almost certainly have bipolar outflows

and a remnant AGB wind. This hypothesis was confirmed by the Mid-infrared images (11.85 and 12.81

µm) of the source, obtained with VISIR/VLT and recently published by Lagadec et al. (2011). From the

images the bipolar structure of the object is clear, with dust emission around the jet lobes. Indeed, the

infrared photometry and the IRAS LRS data reported in the literature (Bains et al. (2009), Lagadec et al.

(2011)) show that the contribution at short wavelengths, which is due to the photospheric component, is
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still weak and the double-peaked infrared SED, characteristic of post-AGB objects, is mainly dominated

by the dust emission. Therefore, the central star is surrounded by an optically thick structure (Lagadec

et al. 2011) which could be a dense equatorial torus.

Non-thermal radio continuum emission has been detected at 3, 6 and 13 cm (Cohen et al. (2006), Bains

et al. (2009)) with significant flux variation among the observations (spectral index α ≈ −0.8 (Cohen

et al. 2006), α ≈ −0.34 (Bains et al. 2009)). Such detections have been associated with synchrotron

emission produced by shocks between the high-velocity wind and the slow AGB remnant. The flux

variation has been interpreted as episodic shocks between both wind components.

The H2O masers

We have observed H2O maser features only from the red-shifted velocities with respect to the OH maser

features, which are centered at ∼ −150 km s−1 (Deacon et al. 2007). The brightest features were detected

between −115.0 and −140.0 km s−1, considering the overlapped region, the overall H2O spectrum that

we have detected is quite similar to the spectrum detected by (Deacon et al. 2007), although as expected

with some difference of the flux densities. Fig. 5.2 (left) shows that the projected spatial distribution

of the H2O maser features resembles a bow-shock-like structure, similar to that observed by (Boboltz

and Marvel 2005) for the water fountain OH 12.8−0.9. Fig. 5.3 (left) shows both the OH and radio

continuum positions with respect to the projected distribution of the 22-GHz H2O maser features that

we have detected. The solid circle represents the uncertainty on the OH position, the error bars show the

accuracy of the radio continuum position, whereas the error on the H2O maser position of each feature

is within the size of the symbols. The offset of the radio continuum position with respect to that of the

H2O maser agrees very well with the mid-infrared image, and it seems likely that both emitting region

are at different points along the jet. In fact, since the H2O maser features have been produced at the red-

shifted side of the jet, the position of the radio continuum could be related to the position of the central

star. But, because the spectral index of the radio continuum implies non-thermal emission (Deacon

et al. 2007) it is more likely synchrotron radiation produced at a region along the jet. This suggests the

presence of a strong magnetic field along the axis defined by the direction of the high-velocity outflow.

In Fig. 5.4 we show the Mid-Infrared image of d46 recently published by (Lagadec et al. 2011). The

corrected position of the center of the mid-infrared image is RA 15 48 19.420, DEC −54 58 20.100, with

an error circle of radius 2 arcsec (Lagadec, private comunication). Thus, as the relative positions are not

known accurately enough, for illustration we have overlaid the H2O maser features with the red-shifted

lobe. The offset of the continuum emission suggest that it could arise from the blue-shifted lobe, as an

effect of a strong magnetic field, as mentioned above. Although the error of the OH position encloses

part of the blue-shifted lobe, it is likely produced in the outer shells of the CSE where the gas has been

accelerated to high velocities through wind-wind collisions.
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Magnetic field

Two of the maser features were detected to have a high percentage of linear polarization (pL > 5 per

cent), which likely is a result of maser emission in the saturated regime (Vlemmings et al. 2006). For

H2O masers, the percentage of linear polarization depends on the degree of saturation of the emiting

region and on the angle (θ) between the direction of the maser propagation and the magnetic field lines.

Additionally, there is a critical value θcrit, such that if θ . θcrit = 55◦, the polarization vectors are parallel

to the magnetic field lines, otherwise they both are perpendicular. According to the pL levels measured,

the polarization vectors in Fig. 5.2 should be perpedicular to the magnetic field lines. The vectors then

appear to trace the poloidal field component, ie, along the direction of the high-velocity outflow. We did

not detect circularly polarized emission. As the masers are relatively weak the resulting 3-σ magnetic

field limit is high, |B‖| < 470 mG.

5.3.2 b292 (IRAS 18043−2116, OH009.1−0.4)

Previous Observations

According to its position on the ([8]−[12],[15]−[21]) MSX two-colour diagram (Sevenster 2002), b292

is likely to be a young post-AGB object (Sevenster (2002), Deacon, Chapman and Green (2004)) .

This source was confirmed as a water fountain by Deacon et al. (2007), who have detected 22-GHz H2O

maser emission over a wide velocity range of ≈ 210 km s−1. In later observations performed by Walsh et

al. (2009) H2O maser emission over the even larger velocity range of 398 km s−1 has been detected, one

of the largest velocity spread in any Galactic H2O maser source. Until the recent observation reported

by Gómez et al. (2011), it was the water fountain with the largest range in H2O maser velocities. In

addition, b292 was the first post-AGB object discovered with emission from the 1720-MHz OH satellite

line (Sevenster and Chapman 2001). The 1720-MHz OH transition is produced in regions with special

conditions of temperature and density and it is often associated with both Galactic star-forming regions

(SFRs) and Supernova remnants (Lockett, Gauthier and Elitzur 1999). Its detection is interpreted as an

indicator of the existence of C-shocks in the emitting regions. The detection of OH maser emission

at 1665-MHz and 1612-MHz associated with the position of the 1720-MHz maser region did confirm

that all the OH maser transitions are related to the same stellar source (Deacon, Chapman and Green

2004). In fact, the position offset from the 1665-MHz and 1612-MHz emitting region is less than 0.3”

(Sevenster and Chapman 2001). Neither Sevenster and Chapman (2001) nor Deacon, Chapman and

Green (2004) have detected the OH 1667-MHz maser transition, which is unusual for a source having

maser emission at 1665-MHz.

The H2O masers

As mentioned above, Walsh et al. (2009) have detected H2O maser emission at both blue-shifted and

red-shifted velocities relative to the systemic velocity. The projected spatial distribution and position
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of such features within the same velocity range (e.g. Fig. 2 of Walsh et al. (2009)) is quite consistent

with the projected position of those features that we have detected (Fig. 5.2). But, considering that the

observations were carried out with a time period of almost a year in between, it is important to point out

the strong variability of the maser flux intesity. In our spectra (Fig. 6.1 right) there is no maser emission

at 53.1 km s−1, while Walsh et al. (2009) detected the brightest peak at that velocity. Besides, they have

detected our brightest feature at only a half the intensity.

As pointed out by Walsh et al. (2009), the spread in the projected distribution of the maser features

with the most extreme velocities could be caused by a very small angle between the jet propagation

direction and the line-of-sight. In addition, Sevenster and Chapman (2001) have pointed out that the

lack of a second (red-shifted) peak of the 1720-MHz OH maser emission might be because the line-

of-sight is almost parallel to the jet propagation direction. Although high-resolution images have not

been obtained, we can thus assume that we are looking at the emerging jet almost pole-on. From

Walsh et al. (2009), the projected orientation in the sky of the jets is East-West. The 22-GHz H2O

maser transition is probably excited by the shock front of the high-velocity outflow, which hits the

slow expanding AGB envelope. Surcis et al. (2011b) have reported detection of 22-GHz H2O maser

emission produced in regions under C-shock conditions in a high mass SFR. In late-type stars, C-shocks

should be produced at the tip of the emergent outflows, whereas the post-shock region seems to achieve

the necessary conditions to produce the 1720-MHz OH maser emission. Fig. 5.3 (right) indicates the

position of the OH maser reported by Sevenster et al. (1997a) relative to the 22-GHz H2O maser features

identified in our analisys. The uncertainty of the OH maser position is represented by the solid circle.

Magnetic field

The fractional polarization level detected for the brightest features is low (< 5 per cent) and corresponds

to non-saturated H2O maser emission. Consequently, the polarization vectors could be either perpen-

dicular or parallel to the magnetic field component projected in the sky plane. Considering the projected

jet direction is East-West, this implies that the B-field is either almost exactly parallel or perpendicular

to the jet. The field in the H2O maser region of b292 is thus potentially toroidal, as observed for W43A

(Vlemmings et al. 2006) or poloidal as seen in d46. Significant levels of circular polarization were not

detected. The 3-σ upper limit for the field strength is |B‖| < 175 mG.

5.4 Conclusions

We have used the ATCA to observe high-velocity H2O emission from two late-type stars, d46 and b292.

We have presented new high angular resolution images of the H2O maser emission in parts of the jet

and measured linear polarization for both sources. The first H2O maser maps of d46 show a bow-shock

morphology similar to that of OH 12.8−0.9. According to the level of pL that we have measured, the

maser emission is in the saturated regime, and the polarization vectors should be perpendicular to the

65



5 Water maser polarization of the water fountains IRAS 15445−5449 and IRAS 18043−2116

Figure 5.4: H2O maser and radio continuum position overlaid on the mid-infrared image published by (lagadec).

For illustration, we have shifted the mid-infrared image, within the 2 arcsec of uncertainty of its position, in order

of align the H2O maser features with the red-shifted side of the high-velocity outflow.
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magnetic field lines, which consequently are the poloidal component. In Fig. 5.4 we have overlaid the

position of the masers with the red-shifted lobe of the jet on the mid-infrared VLTI image of d46 from

Lagadec et al. (2011). The relative position of the radio continuum emission with respect to those maser

features suggest that it is arising from the blue-shifted lobe and is likely due to synchrotron radiation,

indicating the potential presence of a significant magnetic field in the jet. Circular polarization was not

detected, and we cannot infer the magnetic field strength along the line-of-sight to better than a 3-σ

limit of |B‖| < 470 mG for d46. New polarization observations, including that of the radio continuum

emission and a broader velocity range of the H2O spectrum could give accurate measurements of the

magnetic field strength along the jets of d46. For the H2O of b292 we have measured low pL levels, and

the polarization vectors could be either parallel or perpendicular to the magnetic field lines projected on

the sky plane. In fact, the projection of the jets in the sky is likely East-West, and the polarization vectors

could be associated to either the poloidal (i.e. East-West) or toroidal (i.e. North-South) component of

the B-field. Also in this case, no significant levels of circular polarization were not detected. The 3-σ

upper limit for the magnetic field strength, is |B‖| < 175 mG.
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CHAPTER 6

First resolved image of a synchrotron jet

towards a post-AGB star.

The evolution of low- and intermediated-inital-mass stars beyond the asymptotic giant branch (AGB)

remains poorly understood. High-velocity outflows launched shortly after the AGB phase are thought to

be the primary shaping mechanism of bipolar and multipolar planetary nebulae (PNe). However, little

is known about the launching and driving mechanism for these jets, whose energies often far exceed

the energy that can be provided by radiation pressure alone. Here, we report, for the first time, direct

evidence of a magnetically collimated jet shaping the bipolar morphology of the circumstellar envelope

of a post-AGB star. We present radio continuum observations of the post-AGB star IRAS 15445−5449,

which has water masers tracing a fast bipolar outflow. We resolve a radio jet, whose spectral energy

distribution (SED) has a steep negative spectral index above ∼ 3 GHz. The SED is consistent with a

synchrotron jet embedded in a sheath of thermal electrons. The jet is found to be responsible for the

bipolar shape of the object observed at other wavelengths, and is collimated by a magnetic field of

approximately 1.2 mG. We recover observations from the ATCA archive that indicate that the emission

measure of the thermal component has increased by a factor of four between 1998 and 2005 after which

it has remained constant. The short timescale evolution of the radio emission suggests a short lifetime

for the jet. The observations of a synchrotron jet from a post-AGB star with characteristics similar to

those from protostars suggest that magnetic launching and collimation is a common feature of astro-

physical jets. The contents of this chapter originally published in MNRAS letters (Pérez-Sánchez et al.

2013).

Synchrotron radiation is commonly detected towards relativistic jets emerging in high-energy as-

trophysical sources such as active galactic nuclei and quasars. It also has been detected towards a

magnetized jet from a young stellar object (YSO) (Carrasco-González et al. 2010), where owing to
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6 First resolved image of a synchrotron jet towards a post-AGB star.

density and temperature conditions, relativistic outflows were thought to be unlikely. The mechanism

that leads to synchrotron emission involves the interaction between relativistic particles moving in a

region where the dynamics are controlled by a magnetic field. Highly collimated outflows, similar to

those seen toward YSOs, have also been found in the vicinity of post-Asymptotic Giant Branch (post-

AGB) stars (Bujarrabal et al. 2001). If these high-velocity outflows are launched under the influence of

strong magnetic fields, synchrotron emission could be expected. However, to date, no direct evidence

of synchrotron radio emission exists from these high-velocity sources. Post-AGB stars are thought to

represent the group of stars that recently left the asymptotic giant branch (AGB) phase and will develop

into a planetary nebula (PN) (van Winckel 2003). During the evolution of low- and intermediate-initial-

mass stars (∼ 1-8 M⊙) on the AGB, high mass-loss rates (10−7 < Ṁ < 10−4 M⊙ yr−1) together with an

acceleration mechanism, which drives the ejected material outwards, lead to the formation of a dense

and extended circumstellar envelope (CSE). The CSE expands outwards in radial directions with con-

stant velocity of order 10 km s−1. Generally, it is assumed that the mass-loss process is spherically

symmetric during the AGB (Habing and Olofsson 2003) and that asymmetries form in a short timescale

before entering the PNe phase (e.g. Sahai et al. 2007). Therefore, the post-AGB is a key phase for the

understanding of the evolution of the CSE, where the mechanism(s) responsible for shaping asymmetric

PNe must become important. Binary systems, large-scale magnetic fields and interactions with sub-

stellar companions are among the proposed mechanisms that can generate aspherical CSEs (Balick and

Frank 2002). The evolution of the CSEs beyond the AGB often involves the interaction between a fast

collimated wind, which could be created during the very last thermal pulses of the central star, and the

steadily expanding CSE formed during the AGB. Strong evidence of this interaction and of the genera-

tion of strong shocks within the CSE, is the detection of post-AGB sources with water maser emission

spread over unusually large velocity ranges (≥ 100 km s−1) the so called water fountains (Likkel and

Morris (1988), Gómez et al. (2011)). The peculiar H2O maser emission is thought to trace regions that

have been swept up by a high-velocity outflow. Polarized H2O maser emission has also been detected

towards water fountains, suggesting that the high-velocity outflow of at least one of the water fountain

sources is collimated by the magnetic field (Vlemmings, Diamond and Imai 2006). Nevertheless, the

lauching mechanism of high-velocity outflows in post-AGB stars, as well as the origin of the collimat-

ing magnetic field, are still under debate. One of the 20 detected water fountains is IRAS 15445−5449,

which has been classified as an evolved post-AGB star according to the MSX two-color diagram (Sev-

enster (2002), Deacon, Chapman and Green (2004)). Observations have revealed H2O maser emission

spread over ≈ 100 km s−1, with the spectral features redshifted with respect to the systemic velocity

of the source. Based on both satellite- and main-line OH maser observations, Deacon et al. (2007)

suggested that vlsr ≈ −150 km s−1. We note however, that the source has also been classified as a mas-

sive YSO candidate in the RMS survey, where radio continuum was detected at 3 cm (Urquhart et al.

2007b), a classification that could be supported by the detection of relatively strong line emission of

13CO(1 − 0) centered at −44 kms−1 (Urquhart et al. 2007a). However, if the 13CO is associated with

IRAS 15445−5449, the central velocity of the line emission will define the vlsr of the source, and in
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that case, both the H2O and OH maser emission would arise from a blue-shifted outflow. Specifically,

this would imply that the OH emission centered at vlsr ≈ −150 km s−1 and spread over ∼ 60 km s−1,

originates in an outflow with velocity > 200 km s−1. This would correspond to the highest velocity

Galactic OH maser and is very unlikely. Additionally, strong Galactic CO emission is known to occur

around −40 km−1, leading us to conclude that the 13CO emission is likely Galactic in origin and not

associated with 15445−5449. Although a YSO classification cannot yet be ruled out, its classification

as a post-AGB star is more likely. The projected spatial distribution of the detected H2O maser features

resemble a bow-shock structure at the red-shifted lobe, which is likely caused by a collimated outflow

that pierces the steady-expanding CSE of the AGB phase (Pérez-Sánchez, Vlemmings and Chapman

2011). Additionally, mid-infrared images confirm the bipolar morphology of this source (Lagadec et al.

2011). Finally, strong and seemingly non-thermal radio emission was detected and thought to arise from

either the star itself or a shocked interaction region between the AGB envelope and a fast wind (Bains

et al. 2009). Here we report observations indicating the radio continuum to originate from a jet.

6.1 Observations and results

6.1.1 Recent and archive observations

We performed observations of IRAS 15445−5449 with the Australia Telescope Compact Array (ATCA)

on 2012 September 2. The 12-h observation run was carried out with the 6A array configuration, using

2 GHz bandwidths at 1.3 cm, 3 cm, 6 cm, and 16 cm. The observations with the 1.3 cm and 16 cm bands

were carried out using the Compact Array Broadband Backend (CABB) mode 1 M-0.5 k, whereas the

3 cm and 6 cm bands were set up simultaneously with CABB mode 64 M-32 k. The four bands were

set up in full polarization mode. The calibration and the imaging of the data were done using the

package MIRIAD (Sault, Teuben and Wright 1995). Bandpass and flux calibration were performed on

the standard calibrator 1934−638 and phase calibration was performed on 1613−586. The flux densities

for 1934−638 were taken from the available models of this calibrator. The flux densities of 1613−586

were determined in order to check the absolute flux calibration accuracy. The measured flux densities

for this source are in agreement with the values presented in the ATCA calibrators database, within an

uncertainty of less than 10%. The bands at 3 cm, 6 cm, and 16 cm were split in two sub-bands each, in

order to confirm a potential steep spectral index over the large fractional bandwidth at these wavelength.

After calibration, the imaging of the source was performed using multifrequency synthesis. The different

maps were deconvolved using the MIRIAD task MFCLEAN, with which Stokes I, Q, U and V images

were produced. No linear or circular polarization was detected. Maps of smaller frequency ranges were

created in order to test if the lack of linear polarization was due to a large rotation measure across the

individual bands, but the emission was found to be unpolarized. We also retrieved radio continuum

observations of IRAS 15445−5449 from the Australia Telescope Online Archive, the results of which

are included in Table 6.1.
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Table 6.1: Flux density of IRAS 15445−5449.
a This paper, b Bains et al. (2009), c Observations carried out on 1998 June 13 (D. Hunstead, private comunication;

(Murphy et al. 2007)), d Observations taken on 1999 September 2 (ATCA archive), e Observations carried out on

1998 November 9−14 (Deacon et al. 2007).

Epoch 2012a Epoch 2005b Epoch 1998/99

Freq Flux Beam Freq Flux Beam Freq Flux Beam

(GHz) (mJy) (arcsec2) (GHz) (mJy) (arcsec2) (GHz) (mJy) (arcsec2)

- - - - - - 0.84 32.5±4.1c -

2.1 20.36±0.14 5.6×3.0 - - - 1.4 23.0±5.3 7.6×4.9d

2.5 21.72±0.05 4.7×2.6 - - - 2.5 31.2±6.2 3.3×3.0e

5.0 25.41±0.04 1.9×1.5 4.8 22.81±1.11 5.6×2.1 4.8 18.4±2.4 2.0×1.6e

5.8 23.59±0.05 1.6×1.3 - - - - - -

8.5 18.45±0.05 1.1×0.9 8.6 18.67±0.47 3.0×1.2 8.6 10.7±2.3 1.2×0.8e

9.3 17.70±0.03 1.0×0.8 - - - - - -

22.0 12.31±0.03 0.48×0.34 - - - - - -

6.1.2 Maps and spectral energy distribution

The derived flux densities, the beam size, and the rms of each map of IRAS 15445−5449 are listed

in Table 6.1 for our observations in 2012, the observations in 2005 reported by (bains), and the data

taken from the ATCA archive. The source was detected in 1998 at 0.84 GHz (D. Hunstead, private

comunication; (Molonglo)). It was also detected during another survey between 2002 and 2004 at

8.6 GHz, with a flux density of 11.9 mJy (Urquhart). The observed spectral energy distribution (SED)

of IRAS 15445−5449 at radio frequencies is characterized by a turn-over around νc ≈ 3 GHz (Fig. 6.1)

with a steep negative spectral index at higher frequencies. Between 5.0 GHz and 22 GHz the continuum

emission has a spectral index α = −0.56. At 22 GHz we resolved the dense continuum emission along

the north-south direction (Fig. 6.2) extending about 1.9 arcsec, which is consistent with the bipolar

morphology seen in the mid-infrared image of the source (Fig. 6.3).

6.2 Analysis

6.2.1 Model

The shape of the SED indicates that the radio continuum is a superposition of a foreground thermal

component, which is optically thick for ν < νc, and a non-thermal component, which dominates the

radio continuum flux when the thermal component becomes optically thin, i.e., for ν ≥ νc. We model

the observations as arising from non-thermal emission in a cylindrical region surrounded by a sheath of

thermal electrons with constant density (ne = 3.5 × 104 cm−3) and temperature (Te = 6000 K) and a

thickness of approximately 1000 AU. The thickness is limited by the unresolved width of the emission

at 22 GHz. The brightness temperature of the non-thermal jet implies its width to be less than 500 AU.
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For this configuration the emission has two regimes: at low frequencies the thermal emission becomes

optically thick, which causes the emission from the non-thermal electrons to be absorbed, and the SED

to exhibit a positive spectral index. On the other hand, since at high frequencies the thermal emission

becomes optically thin, the contribution from the non-thermal electrons becomes dominant, resulting

in the negative spectral index. Although the spectral index indicates synchroton emission, polarized

emission was not detected. This is a direct consequence of depolarization due to the thermal electrons

surrounding the region where the synchrotron emission arises.

6.2.2 Fermi acceleration and magnetic field

Our best fit to the observed SED implies a spectral index α = −0.68 ± 0.01 for the non-thermal compo-

nent. As the stellar temperature is approximately 12000 K (Bains et al. 2009), ionization by the star is

unlikely to provide many free electrons. But, if we assume a strong shock (J-shock) between the mag-

netically collimated outflow and the slow AGB wind, then ionized material will propagate downstream

throughout the shock-front. Eventually, a fraction of the electrons will be accelerated to relativistic

speeds through the Fermi shock acceleration mechanism. Hence, Fermi accelerated electrons interact-

ing with the magnetic field lines that collimate the outflow generate the observed non-thermal emission.

Within this framework, we can assume that the total internal energy of the shocked region is split be-

tween the particles (electrons and protrons) and the magnetic field. When the total energy density is

minimized with respect to the magnetic field, the energy density of the particles becomes nearly equal

to the energy density of the magnetic field, and we can assume equipartition of the energy. This as-

sumption enables us to estimate the strength of the minimum-energy magnetic field interacting with

the relativistic electrons. This minimum-energy magnetic field and the minimum total energy can be

calculated from

Bmin = [4.5c12(1 + k)L/φ]2/7R−6/7 G, and (6.1)

Emin = c13[(1 + k)L]4/7φ3/7R9/7erg, (6.2)

where R is the size of the source, L is the integrated radio luminosity, k is the ratio between the energy

of heavy particles (protons) and the electrons, φ is the volume filling factor of the emitting region, and c12

and c13 are functions of both the spectral index, and the maximum and minumum frequencies considered

for the integration of the spectral energy distribution (Pacholczyk 1970). The distance to the source is not

known, and only its (near) kinematic distance has been reported D = 7.1 kpc. From the measured extent

we estimate that the size of the source is R = 6.74×103 [D/7.1 kpc] AU. Integrating the radio luminosity

between νmin = 107 Hz and νmax = 1011 Hz, assuming a spectral index of α = −0.68, a volume filling

factor φ = 0.004[D/7.1 kpc]−2 (for a cylinder of 500 AU radius), and k = 40 (which is an appropriate

value for electrons undergoing Fermi shock acceleration in a non-relativistic jet (Beck and Krause 2005),
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we obtain Bmin = 5.43 [D/7.1 kpc]−2/7 mG and Emin = 4.75 × 1043 [D/7.1 kpc]3/7 erg. Since we have

not detected any linear polarization, we cannot determine if the synchrotron radiation traces either the

poloidal (Br) or the toroidal (Bφ) component of the magnetic field. However, since Br ∝ r−2, this

component can likely be neglected at r > 1000 AU compared to the toroidal field, which has Bφ ∝ r−1.

Therefore, assuming that the measured magnetic field strength corresponds to the toroidal component

at R = 6.74 × 103 [D/7.1 kpc] AU, the magnetic field at R⋆ = 2 AU is Bφ ≈ 18.3 [D/7.1 kpc]1/7 G,

which is similar to the extrapolated magnetic field strengths towards other (post-)AGB stars from maser

observations (e.g. Vlemmings, Diamond and Imai 2006).

6.2.3 Variability and lifetime

A negative spectral index was obtained from the archive observations towards IRAS 15445−5449 (Ta-

ble 6.1). The spectral index below 13 cm, of the SED observed in 1998/1999, is α = −0.85 ± 0.05,

with a turn-over frequency shifted toward a lower frequency compared with the SED observed in 2012.

Additionally, radio continuum observation at 3 cm and 6 cm carried out in 2005 yielded a spectral index

α = −0.34 ± 0.24 (Bains et al. 2009). Because it is a single data point taken between epochs 1998/99

and 2005, the observation at 3 cm reported by Urquhart et al. (2007b), which yielded a similar flux

density to that reported by Bains et al. (2009), is not included in our fit. Since the time between the

two observations is negligible compared with the synchrotron life time of relativistic electrons, we can

assume that the flux of the synchrotron emission remained nearly constant between 1998 and 2012 and

fit all observations considering a single synchrotron component and an increasing emission measure of

the surrounding sheath of thermal electrons (Fig. 6.1). An increase of the emission measure by a factor

of 3 between 1998 and 2005, and stable thereafter, can fit all three observational epochs. This implies

that, assuming the dimensions of the surrounding sheath of thermal electrons remained the same, the

electron density increased by a factor of two in seven years, likely by the same shock-ionization process

that produces the electrons that are accelerated to relativistic velocities by the Fermi mechanism. In

recent years, the production rate of thermal electrons is in equilibrium with their recombination rate.

The stability of the non-thermal component over almost 15 years indicates that this emission is unlikely

to originate from the colliding winds of binary systems such as observed around, for example, binary

Wolf-Rayet stars (e.g. Chapman et al. 1999).

The rapid initial increase of emission measure between 1998 and 2005 likely implies the jet, respon-

sible for the ionizing fast shocks, to have been launched only shortly before. Additionally, as the syn-

chrotron flux depends on the effectiveness of the Fermi shock acceleration mechanism, once the shock

front reaches outer layers where the strength of Bφ and the density of the CSE decrease, the synchrotron

component would no longer be observable. This also suggest that the magnetically collimated outflow

was launched recently. Thus, the lifetime of the synchrotron radiation toward post-AGB sources will

most likely be determined by the time of propagation of the collimated outflow throughout regions of

the CSE where the shock conditions enable the Fermi shock acceleration mechanism. Consequently, the
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Figure 6.1: Spectral energy distribution of the radio continuum of IRAS 15445−5449 for three different epochs:

1998/99 (references listed in Table 6.1), 2005 reported by Bains et al. (2009), and our observation in 2012.

The solid line (epoch 2012) and the dot-dashed line (epoch 1998/99) are the results of our models, that fit the

observations. We consider a synchrotron jet surrounded by a sheath of thermal electrons. Assuming that the

synchrotron emission remained constant between 1998 and 2012, our model suggest that the electron density of

the region surrounding the synchrotron emitting region has increased by a factor of two between 1998 and 2005,

and remained stable since then. The grey-dashed line indicates the synchrotron component. The best fit yielded a

spectral index of α = −0.68 ± 0.01 for the synchrotron component.
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time scale for the synchrotron radiation would at most be a few hundred years. Depending on the initial

mass of the star, the synchrotron radiation time scale would be shorter than, or almost comparable with,

the time scale of the post-AGB phase (van Winckel (2003) and references therein). The fact that the

source is a water fountain suggests that, in principle, this kind of source would have conditions required

to trigger the Fermi shock acceleration mechanism. Nevertheless, a larger sample of confirmed water

fountains and further observations are necessary to directly correlate both phenomena.

6.2.4 Implications for post-AGB outflows

The physical processes responsible for shapping the asymmetrical envelopes observed towards PNe

have been subject of intense debate along the last three decades. Recently, it has been suggested that

the bipolar structures observed towards post-AGB stars and young PNe are associated with low-density

axisymmetric regions that are illuminated by a central star obscured by a dense equatorial torus (e.g.

Koning, Kwok and Steffen 2013). These low-density regions are assumed to be formed as a result of

the propagation of high-momentum, collimated outflows that emerge from the inner regions of the CSE,

creating cavities along the axis defined by its propagation direction. Nevertheless, the actual formation

process of such cavities is not yet clear. On the other hand, observations of molecular outflows traced by

CO lines towards a large sample of post-AGB stars revealed the existence of very fast collimated out-

flows (Bujarrabal et al. 2001). The momentum carried by most of these fast, highly collimated outflows

cannot be explained considering a radiatively driven wind only, but the minimum energy calculated

for the jet of IRAS 15445−5449 is within the typical range of the kinetic energy measured from the

observation of these molecular outflows (1042 − 1046 erg). Magnetohydrodynamical simulations have

shown that magnetic fields can be an important agent in the collimation of the outflows observed towards

PNe (García-Segura et al. 1999). Dust polarization observations have been carried out in order to trace

the magnetic field morphology. But so far the observational study of the properties of magnetic fields

towards AGB and post-AGB stars and PNe has relied on the detection of dust polarization and polar-

ized maser emission arising in their CSEs and high-velocity outflows (e.g. Sabin, Zijlstra and Greaves

(2007), Vlemmings, Diamond and Imai (2006)). Our results provide strong observational evidence that

indicates that the magnetic field is an important source of energy and is thus of great importance for

the launching and driving mechanisms of the high-velocity jets from post-AGB stars. Furthermore, it

will now be possible to directly test which class of magnetic launching models fits the observations (e.g.

Huarte-Espinosa et al. 2012).

6.3 Discussion

For the first time, we resolve a synchrotron jet towards a post-AGB star. The resolved radio contin-

uum emission is consistent with the bipolar morphology of IRAS 15445−5449 observed at the infrared,

reported by Lagadec et al. (2011), and suggests the jet is responsible for shaping the CSE. Although
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6.3 Discussion

Figure 6.2: Radio continuum map of IRAS 15445−5449 at 22.0 GHz (color) and 5 GHz (contours). The peak-flux

density of the 22.0 GHz image is 3.65 mJy/beam, while σ = 5.0×10−2 mJy. The contour lines at 5 GHz are drawn

at 10, 30, 50, 70, and 90% of the peak flux of 16.6 mJy/beam. The beam size for the 22.0 and 5 GHz observations

are drawn in the bottom left corner.
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6 First resolved image of a synchrotron jet towards a post-AGB star.
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Figure 6.3: 2012 radio continuum map of IRAS 15445−5449 at 22.0 GHz (contours) overlaid on the mid-infrared

VLTI image (Lagadec et al. 2011), the H2O masers (colored symbols) observed in the redshifted lobe of the high-

velocity outflow (Pérez-Sánchez, Vlemmings and Chapman 2011) and the radio continuum position (solid triangle

with error bars) determined in the 2005 epoch (Bains et al. 2009). The contours are drawn from 10σ at intervals

of 10σ. The mid-infrared image has been shifted to match the observed outflow for illustration, as the positional

uncertainty of the mid-infrared observations, with an original centre of RA 15h48m19s.42 and Dec −54◦58′20”.10,

is 2 arcseconds.
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6.3 Discussion

both theoretical models and previous H2O maser observations have been used to infer the presence of

magnetically collimated outflows towards post-AGB stars, our result represents a direct observational

evidence and the first unambigous proof that magnetic fields are a key agent to explain the asymetries

observed towards PNe. Still, the source of the stellar magnetic field remains unclear. A large scale

magnetic field could arise from (convective) dynamo action in a single star or require a binary (or plan-

etary) system to be maintained. In one of the binary scenarios, the bipolar outflows are launched from

a low-mass companion accreting mass ejected by the more evolved star. In this case, the collimation

of the outflow might occur via a mechanism similar to that collimating the bipolar outflows from pro-

tostars, for example a disc-wind or an X-wind (Blandford and Payne (1982), Shu et al. (1994)). Our

results cannot yet discern which is the most likely scenario for IRAS 15445−5449, although a hint of

curvature might point to a binary ejection mechanism. Finally, our detection of synchotron radiation

towards IRAS 15445−5449 also demonstrates that the conditions for the Fermi shock acceleration of

electrons can be attained at the final stages of the evolution of intermediate-initial-mass stars.
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CHAPTER 7

CO line emission from asymmetrical AGB

sources

Combining radio observations of circumstellar molecular line emission with radiative transfer models

is one of the most reliable methods to better understand the processes behind the return of nuclear-

processed material to the interstellar medium from stars evolving along the AGB (e.g Ramstedt et al.

2008). It is commonly used to constrain the kinematics and the chemical composition of the outflowing

gas, which allows the study of the mass-loss history of the star, and also provides information concerning

the nuclear processes that take place in the interior of the star prior to the material ejection. In this

context, the CO molecule is the most studied species towards the CSEs of AGB sources (e.g Schöier

and Olofsson 2001, and references therein); its high abundance relative to other molecular species in the

CSEs makes it a solid probe of their molecular gas component. Due to the high dissociation energy of

the CO molecule, as well as due to H2- and self-shielding, the interstellar UV radiation affects the CO

abundance only at the outermost regions of the CSEs of AGB stars. This fact makes the CO molecule

also an unique indicator of the morphology and the size scales of CSEs of AGB stars. In addition, the

CO molecule is a common species for all types of stars evolving along the AGB, i.e., M-, S- and C-type

AGB stars.

In the CSEs of AGB stars, the excitation of the different CO rotational transitions is thought to be

dominated by collisions with H2 molecules, although radiative excitation via infrared emission may be

more efficient for low mass-loss rate sources. In the ground vibrational state, the high energy radiative

transitions of CO are usually found tracing regions with high temperatures, i.e., regions close to the

central stars, while low energy CO transitions (J=2-1, 1-0) are observed through the entire CSEs, up to

the outer regions where CO is finally photodissociated. Hence, observations of multiple CO radiative

transitions towards a particular source can in principle be used to constrain the kinetic temperature dis-

tribution of the molecular gas within the regions traced by the CO emission.
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7 CO line emission from asymmetrical AGB sources

Radio observations of CO emission yield broad line profiles whose shapes, width and integrated inten-

sities can be related to physical properties of the emitting source such as, for instance, optical depth,

kinetic temperature, expansion velocity, and morphology. However, the large number of variables and

unknown parameters that need to be considered in the models leads to results which strongly depend

on the model itself. In the case of the CO line emission, conservative values are generally assumed

for parameters which account for distance to the source, photodissociation radii, heating and cooling

processes, fractional abundances, isotopic ratios, dust-to-gas ratio, among many others. Constant gas

expansion velocity and isotropic mass-loss rates are commonly assumed; the steady-wind scenario,

which accounts for density distribution of H2 falling as r−2 and constant mass-loss rates. The assump-

tion of spherical symmetry is rather common and grounded on the scenario of isotropic mass-loss. Such

assumption considerably reduce the computational cost of the modelling, and also simplify the treatment

down to a one-dimension system where both the density and temperature distribution are functions of

the distance to the star only. However, the new generation of telescopes such as ALMA represent an

important increase of spatial resolution which allows us to identify substructures that can be related to

large variations of the mass-loss rates or to anisotropic mass-loss such as asphericity, clumps, disks,

and shells (e.g Maercker et al. 2012). Consequently, the sensitivity of one-dimensional radiative transfer

models to the effects that such substructures, or the non-sphericity of the CSEs, can induce on the cir-

cumstellar emission lines needs to be evaluated in order to know the range of accuracy of their results.

In this chapter we present the results of an initial approach to the problem of CSEs displaying nonspher-

ical symmetric morphologies. Emission from synthetic sources are calculated aiming to analyse the CO

spectral features which could be detected towards CSEs of AGB stars with morphologies resembling

spheroids with different degrees of oblateness. Jura (1983) presented an analytic approach to oblate

morphologies of CSEs, and here we present the results of full 3-D radiative transfer models using LIME

(Brinch and Hogerheijde 2010). The models are described in section 7.1. The results and the analysis

are presented in sections 7.2 and 7.3, respectively. Our conclusions are presented in section 7.4

7.1 The model

The models of CO line emission are calculated assuming that the CSEs are spheroids with different

degree of oblateness. The simplest case is the spherical symmetric density distribution given by

ρ(r) =
Ṁ

4πvr2
, (7.1)

where v is the expansion velocity of the CSE and Ṁ is the mass-loss rate.

When an anisotropic density distribution is assumed, the magnitude of the radial vector s is

s2 = x2 + y2 +
z2

a2
, (7.2)
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7.1 The model

where the parameter a is the ratio between the major and minor axis of the ellipsoid. That is, if a = 1

then s = r and the density distribution is spherically symmetric. In the case of a , 1

s2 =
r2

a2

(

(a2 − 1)sin2θ + 1
)

. (7.3)

where θ is the polar angle measured from the z-axis. Integrating the mass-loss over a spheroid of

radius r and surface area dA, and assuming only the case of an oblate ellipsoid (0 < a < 1), the density

distribution is

ρ(r, θ) =
Ṁ

4πvr2
F(a, θ). (7.4)

where the factor F(a, θ) is

F(a, θ) =
a(1 − a2)1/2

tan−1

(

(1−a2)1/2

a

)

(a2sin2θ + cos2θ)

. (7.5)

The result is an oblate ellipsoid where the gas density distribution extends further out over the x- and

y-axis than along the z-axis. The oblate density distribution can be assumed as a result of anisotropic

mass-loss and an isotropic velocity field or vice versa. In this case we assume the latest case, i.e.,

isotropic mass-loss rate and anisotropic velocity field that could be the result of the onset of a collimated

outflow. Consequently, the expansion velocity along the major axis is v, while along the minor axis it

is v/a. The factor F(a, θ) in Eq. 7.5 allows a direct comparison between the spherical and the oblate

density distribution for models considering equal values of total integrated mass-loss rates. We assume

three values of a in Eq. 7.4 to generate the oblate shapes; a = 0.9, 0.7 and 0.5. Although the spherical

symmetric case is modelled using Eq. 7.1, it will be addressed as the a = 1 case hereafter. An example

of the modelled density distributions is shown in Fig. 7.1.

Once the geometry of the models is defined, the radiative transfer model is split in two stages. The first

stage is to specify the gas temperature distribution throughout the CSE. In LIME it can be done defining

the temperature as an analytical function of the coordinates of each particular model. However, we use

the full 3-D radiative transfer code RADMC-3D (Dullemond 2012) to calculate the dust temperature

considering the dust density distribution given by either case a = 1 or a < 1, assuming a gas-to-dust

mass ratio of 1.0 × 102. The modelling of the dust has been performed using the standard dust opacity

file provided by RADMC-3D, which is calculated from the optical constants of amorphous silicates

(MgFeSiO4) taken from the Jena database (Jaeger et al. 1994, Dorschner et al. 1995) for dust grains

particles with 0.1 µm radius. Hence, assuming that the dust grains and the molecular gas are fully

coupled, the dust temperature is used as the input temperature for the LIME models of the molecular

gas.

The second stage is the actual LIME model of the CO emission. It includes 40 radiative transitions of

both 12CO and 13CO. The fractional abundance f12CO and the isotopic ratio 12CO/13CO values assumed
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7 CO line emission from asymmetrical AGB sources

Figure 7.1: Density distribution projected on the X-Z plane for a synthetic source with Ṁ = 5 × 10−5 M⊙yr−1. The

spherical symmetric case (top left), a = 0.9 (top right), a = 0.7 (bottom left) a = 0.5 (bottom right).
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7.1 The model

Table 7.1: Model parameters.

a 0.5, 0.7, 0.9, 1.0

Ṁ [M⊙ yr−1] 5 × 10−7, 5 × 10−6, 5 × 10−5

vexp [km s−1] 10, 15

D 150 pc, 1 kpc

T⋆ 2000 K

L⋆ 8300 L⊙
Rin 20 AU

Rout 14000 AU

fCO 5×10−4

12CO/13CO 20

are 5 × 10−4 and 20, respectively, which are within the range of the values that are usually reported in

the literature. The values of the full set of parameters adopted in the models are listed in Table 7.1.

In order to analyze the spectral features of CO, each model includes the imaging of five rotational

transitions in the ground vibrational state (J = 1 − 0, 2 − 1, 3 − 2, 6 − 5, 15 − 14) of both 12CO

and 13CO. The images of the brightness distribution are calculated along three line-of-sight from the

point of view of the observer: Face-on (X-Y plane), a rotation of 45◦ around the X-axis, and edge-on

(X-Z plane). The images are data cubes of 400 channels along the line-of-sight velocity, centered at the

systemic velocity of the source vlsr = 0 km s−1, with velocity (channel) resolution of 0.25 km s−1. For

illustration, the three images calculated for the J = 3− 2 12CO transition for the case a = 0.5 are shown

in the Fig. 7.2.

The spectral features of each rotational transition modelled are obtained after the convolution of

the synthetic brightness distribution with a 2-D gaussian beam using the CASA task imsmooth. This

allow us to simulate single-dish observations of the same synthetic source along the three line-of-sights

modelled for each transition, assuming beam sizes of real radio telescopes at each frequency (see Table

7.2). Hence, the integrated intensities of the spectral lines obtained are calculated and compared.

Table 7.2: Beam sizes for the simulated observations.

Transition beam size Telescope

1-0 33" OSO

2-1 21" JCMT

3-2 14" JCMT

6-5 8" JCMT

15-14 12" HERSCHEL / HIFI
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7 CO line emission from asymmetrical AGB sources

Figure 7.2: Image of the CO(3-2) transition calculated for a = 0.5, vexp = 10 km s−1 and Ṁ = 5× 10−5 M⊙ yr−1 for

line-of-sight face-on (X-Y plane), rotated 45◦ around the X-axis and edge-on (X-Z plane). The bottom right panel

shows the profile of the J = 3 − 2 12CO line emission for each line-of-sight for a simulated gaussian beam of 14"

towards the center of the source.

7.2 Results

7.2.1 Line profiles

The line profiles obtained from observations towards AGB sources provides information about the opti-

cal depth of the transition along the line-of-sight towards the observed source, as well as of the relative

size of the source with respect to the telescope beam (Olofsson et al. 1993). The line profiles obtained

from our simulated observations towards the synthetic sources display characteristics of both spatially

resolved and unresolved; optically thin and optically thick emission. In fact, optically thin, spatially

resolved emission (double-peaked features) is usually observed for the three lower energy transitions

modelled, but mostly towards the synthetic sources with low mass-loss rate. Flat-topped profiles, which

corresponds to optically thin, spatially unresolved emission are also observed, mostly for the source at
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7.2 Results

Figure 7.3: Image of the CO(3-2) transition calculated for a = 0.5, vexp = 10 km s−1 and Ṁ = 5 × 10−6 M⊙ yr−1

for line-of-sight face-on (X-Y plane), rotated 45◦ around the X-axis, and edge-on (X-Z plane). The bottom right

panel shows the profile of the J = 3 − 2 12CO line emission for each line-of-sight for a simulated gaussian beam

of 14" towards the center of the source.

1 kpc in the three lower transitions modelled; whereas for the source at 150 kpc, it is observed for the

J=6→5 transition in some cases. The triangular line profile is also common for the source at 1 kpc,

whereas for the source at 150 pc it is only observed in the J=15→14 transition. Such line profile is

indicative of optically thick, spatially unresolved emission.

Besides the changes on the line profile, the most common effect seen for all the lines is the increase of

the observed peak flux when the mass-loss rate increases from Ṁ = 5 × 10−7 M⊙ yr−1 (hereafter Ṁ−7)

to Ṁ = 5 × 10−5 M⊙ yr−1 (hereafter Ṁ−5) as expected.

In the case of the synthetic sources with different degrees of oblateness, observing along the three

line-of-sight results in spectral features covering different velocity ranges. For observations along the

minor axis (θ = 0), the component of the expansion velocity along the line-of-sight is scaled by a

factor of 1/a, whereas for observations at θ = π/4, the component of the expansion velocity along the
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7 CO line emission from asymmetrical AGB sources

line-of-sight is given by

vπ/4 =
vexp

a
cos

(

π

4

)

√

1 + a2. (7.6)

Observations along the major axis (at θ = π/2) yield spectral lines covering the same velocity range

than the lines obtained from the observations towards the spherically symmetric case. Furthermore,

the three spectral features obtained for each transition corresponding to observations along the different

line-of-sight exhibit different peak-flux values, whose differences increase for the most oblate sources.

Therefore, is important to calculate the velocity integrated intensity for each spectral line (I =
∫

Tmb dv)

observed along each line-of-sight in order to learn whether the emission is affected by the oblateness of

the source. Moreover, the velocity integrated intensity is a parameter that is involved in the calculations

of the mass-loss rate towards the CSEs of AGB stars.

The spherical symmetric case

The spectral features obtained from the simulated observations towards the spherical CSEs are shown

in Fig. 7.4 for the two assumed distances, with the beam sizes from Table 7.2. In the case of the source

at 150 pc, only the J=1→0 transition display double-peaked line-profiles for all the different mass-loss

rates, whereas the line profile of the J=2→1 and the J=3→2 transitions change as a function of the

mass-loss rate from optically thin to optically thick, both spatially resolved emission. The J=6→5

transition displays a line profile that corresponds to optically thin, spatially unresolved emission for

the Ṁ−7 source, whereas for the Ṁ−6 source the line profile corresponds to partially resolved emission.

Although the line profile is not as pronounced as for the Ṁ−5 source, where the emission is spatially

resolved, the profile of the line for the Ṁ−6 and Ṁ−5 sources indicate that the emission is optically thick.

In the case of the J=15→14 transition, the observations result in optically thick, spatially unresolved

emission, and the only apparent changes between the different mass-loss rate sources is the value of the

peak flux and the smoother line profiles for the higher mass-loss rate sources.

In the case of the source with distance of 1 kpc, the only partially resolved features are those observed

in the J=2→1, J=3→2 and J=6→5 transitions for the Ṁ−5 source. The features observed in this case

corresponds to optically thick emission. Spatially unresolved emission is observed for the J=15→14

and the J=1→0 for all cases; the former being optically thick and the latest optically thin for the three

mass-loss rate values considered. Observations along the different line-of-sight yield similar spectral

features, as is expected.

The slightly oblate CSE case: a = 0.9

In Fig. 7.5 are shown the line profiles obtained from simulated observations of 12CO emission towards

the synthetic CSEs whose density distribution resembles an ellipsoid with a ratio between the major

axis (either the x- or y-axis) and the minor axis (z-axis) of a = 0.9, assuming that the distances to the
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7.2 Results

Figure 7.4: Spectral features of the different transitions modelled for the a = 1.0 case. The different panels show

the line profile obtained from the simulated observations towards sources with different mass-loss rates at 150 pc

(left) and 1 kpc (right).
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7 CO line emission from asymmetrical AGB sources

source are 150 pc and 1 kpc. Observing along the minor axis results in spectral features whose width is

22.2 km s−1, while observations at θ = π/4 results in spectral features 21.2 km s−1 wide. The simulated

observations along the major axis result in the most narrow spectral features, covering a velocity range

of 20.0 km s−1.

In the optically thin limit, the lines observed along the major axis display higher peak-flux values, dif-

ferent from the optically thick case (Ṁ−5), where the wider spectral features also exhibit higher peak

flux values than the narrow ones. For all the mass-loss rate values, the profile of the spectral features

of each individual transition does not change as a function of the line-of-sight, i.e. the spectral fea-

tures of the same transition display characteristics of either optically thin or optically thick; spatially

resolved or unresolved emission along the three line-of-sights considered. The only exception seems

to be the J=1→0 transition observed towards the Ṁ−5 source at 1 kpc, whose emission exhibit a more

pronounced line profile along the major axis than along the minor axis of the oblate ellipsoid. In this

case, the emission shows a hint of being optically thick, spatially unresolved emission along the major

axis, whereas along the other two line-of-sights the line profile is more flat-topped than triangular. In

contrast, the counterpart emission towards the source at 150 pc exhibits line profiles which corresponds

to optically thin emission along the three line-of-sights. In the case of the closest source, the emitting re-

gion of the J=1→0 transition is far too extended compared to the size of the 2-D gaussian kernel (beam)

used to convolve the brightness distribution. Therefore, the emission observed along the different axis

may trace regions with similar temperature distribution. On the other hand, because the beam size is

comparable with the extension of the J=1→0 emission towards the most distant source, the observations

along the different line-of-sights trace more extended regions where the difference on the temperature

distribution as a function of the distance to the star becomes relevant. For the other lines, the difference

introduced by the distance to the observed source is related, as expected, to the peak flux observed. In

addition, those optically thin, spatially resolved features observed towards the source at 150 pc become

optically thin, spatially unresolved emission for the more distant source, as would be also expected. The

J=15→14 transition shows a more irregular line profile towards the source at 1 kpc than towards the

closest one.

The a = 0.7 case

In Fig. 7.6 are shown the line profiles obtained from the simulated observations towards oblate synthetic

source with ratio between the major and the minor axis a = 0.7. The velocity ranges of the spectral

features observed at θ = 0 and θ = π/4 are 28.6 km s−1 and 24.7 km s−1 respectively, whereas along the

major axis it is 20 km s−1, similar to the spherical case.

In the case of the closest source, all the features of the four lower energy transition correspond to

optically thin emission when observed towards the lowest mass-loss rate (Ṁ−7) source. For the three

lower transitions the simulated observations yield spatially resolved spectral features along the three
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7.2 Results

Figure 7.5: Spectral features of the different transitions modelled for the a = 0.9 case assuming distances to the

source of 150 pc (left) and 1 kpc (right). The dotted (red) and dashed (blue) lines show the spectral features

obtained from simulated observations at θ = π/2 and θ = π/4, while the solid line shows the line profile for

observations at θ = 0.
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line-of-sights. In the case of the J=6→5 lines, the profile of the lines for the different line-of-sights are

slightly different. Along the major axis the line profile is flat-topped, indicative of spatially unresolved

emission. At θ = π/4 the emission is still spatially unresolved, but at θ = 0 a tentative double-peaked

feature appears.

For the most distant synthetic source with the lowest mass-loss rate modelled, the line profiles observed

in the three lower energy transitions also correspond to optically thin emission. In the case of the

J=6→5, the line profiles becomes irregular and display similar peak-flux values along the three line-of-

sights. The differences of the line profiles observed along the different line-of-sights are more clear for

the J=15→14 transition, where the peak-flux observed along the major axis is about a factor of 3 lower

than along the minor axis.

The simulated observations towards the closest source with Ṁ−6 yield spectral features which corre-

spond to spatially resolved emission along the three line-of-sights for the three lower energy transitions

modelled. The J=15→14 transition already shows characteristics of spatially unresolved emission, with

lower peak-flux value for the narrower feature (observed along the major axis) than the peak-flux of the

broader emission (observed at θ = 0). The J=6→5 transition display differences on the line profile

that can be related to spatially unresolved, optically thin emission at θ = 0, and to spatially resolved,

optically thick emission at θ = π/2.

Observing towards the more distant source results in different line profiles along the different line-of-

sights. Such change is more evident in the J=1→0 case, where the observations along the minor axis

exhibit a clear double-peak line profile, different from the parabolic profile observed along the major

axis. In the case of the J=2→1 and J=3→2 transitions, the emission seems to be partially resolved,

optically thin emission along the minor axis; and spatially unresolved, optically thin emission along the

θ = π/4 direction. In contrast, observing along the major axis results in a smooth parabola profile for

the J=2→1.

From the simulated observation towards the synthetic sources with Ṁ−5, the line profiles of the

J=3→2 and J=6→5 transitions corresponds to optically thick emission for both sources at 150 pc and

1 kpc. Although their line profiles are similar along the three line-of-sights for the closest source, the

J=3→2 lines observed towards the more distant source yield a line profile which is more flat-topped

than the one along the major axis. The J=1→0 and the J=2→1 transitions show clear differences for

observations along the different line-of-sights towards the source at 1 kpc. Both display triangular fea-

tures which corresponds to optically thick, spatially unresolved emission from the observations along

the major axis, whereas along the minor axis, the line profiles correspond to optically thin emission.

The a = 0.5 case

In Fig. 7.7 we show the spectral features obtained from the simulated observations towards the oblate

synthetic CSEs with major and minor axis ratio a = 0.5. The spectral velocity range for the three differ-

ent line-of-sights are 40 km s−1 at θ = 0; 31.6 km s−1 at θ = π/4, and 20.0 km s−1 at π/2.
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Figure 7.6: Spectral features of the different transitions modelled for the a = 0.7 case assuming distances to the

source of 150 pc (left) and 1 kpc (right). The dotted (red) and dashed (blue) lines show the spectral features

obtained from simulated observations at θ = π/2 and θ = π/4, while the solid line shows the line profile for

observations at θ = 0.
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For the closest source with Ṁ−7, the three lower energy transition modelled display line profiles which

correspond to optically thin, spatially resolved emission along the three line-of-sights. In the case of

the J=6→5 transition, the line profile corresponds to spatially unresolved emission at θ = π/2, different

from the observations along the minor axis, where the line exhibits a double-peaked profile. At θ = π/4

the profile also corresponds to spatially unresolved, optically thin emission, although a hint of a double-

peaked profile can also be seen. The line profiles of J=15→14 in the Ṁ−7 source are also different

along the different line-of-sights. At θ = π/2 and θ = π/4 the line profiles have the triangular shape

corresponding to optically thick, spatially unresolved emission. At θ = 0 the line profile obtained is less

pronounced at the top, which could be an indicative of optically thin, spatially unresolved emission.

For the Ṁ−7 at a distance of 1 kpc, there are more evident differences between the line profiles observed

along the three line-of-sights, and in particular for the J=1→0 and the J=15→14 transitions. The former

exhibit well defined double-peaked profiles for observations at θ = 0 and θ = π/4, while along the major

axis the line profile becomes triangular. In the case of the J=15→14 line, the difference between the

line profiles observed along the different line-of-sights is evident in the peak-flux of the lines observed,

although such difference is reduced as the mass-loss increases.

The line profiles observed towards the closest Ṁ−6 source for the J=1→0 transition correspond to opti-

cally thin, spatially resolved emission along the different line-of-sights. It is also the case for the J=2→1

and the J=3→2 transitions. In the latest, the line profile observed along the major axis shows a double-

peaked profile, but it is clear that it is less optically thin than along the θ = π/4 and θ = 0. The simulated

observations of the J=6→5 transition results in different line profiles along the three line-of-sights. At

θ = 0 the emission observed is optically thin, spatially resolved. At θ = π/4 the line profile corresponds

to optically thin, spatially unresolved emission, whereas at θ = π/2 the emission observed is optically

thick, spatially resolved. For the J=15→14 transition, the lines have roughly the same peak-flux. Their

profile correspond to spatially unresolved emission. At θ = π/2 the triangular shape of the line is more

obvious than along any other direction, indicating that the transition is optically thick. At θ = π/4 the

line profile is less pronounced, but it likely corresponds to optically thick rather than to optically thin

emission. At θ = 0 the profile is rather rounded, indicating that in this case the emission is more spa-

tially resolved. Again, the differences between the line profiles observed along the three line-of-sights

are more evident towards the source at 1 kpc. However, the line profiles obtained along the minor axis

and at θ = π/4 are the same despite the distance to the source, while along the major axis, the line

profiles obtained towards the more distant source correspond to optically thick, spatially unresolved

emission.

For the closest Ṁ−5 source, the line profiles of the four lower transitions corresponds to spatially

resolved emission, while the line profile of the J=15→14 transition corresponds to spatially unresolved,

optically thick emission. Regardless the J=1→0 transition, the line profile of all the lines observed at

θ = π/2 are optically thick. At θ = π/4, the J=2→1 transition exhibits a profile between flat-topped and

a smooth-parabola, while for the higher transitions the latest is better defined. At θ = 0, the shape of the

lines correspond to optically thin emission for the J=1→0 and J=2→1, and to optically thick for the
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Figure 7.7: Spectral features of the different transitions modelled for the a = 0.5 case assuming distances to the

source of 150 pc (left) and 1 kpc (right). The dotted (blue) and dashed (red) lines show the spectral features

obtained from simulated observations at θ = π/2 and θ = π/4, while the solid line shows the line profile for

observations at θ = 0.
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J=6→5 transition. The line profile of the J=3→2 is between the smooth-parabola and the flat-topped

profile. For the more distant source, all the observations along the major axis yield optically thick,

spatially unresolved features. In contrast, the line profiles along the minor axis exhibit double-peaked

profiles, with the exception of the J=15→14 transition.

7.3 Analysis

As mentioned above, the line profiles obtained from radio observations provide useful information about

both the expansion velocity and the size of the emitting region relative to the beam size of the telescope.

The low-energy CO transitions trace the most extended regions of the CSEs, whereas the higher tran-

sitions trace their innermost regions. Multi-transition observations towards the CSEs are performed in

order to estimate the mass-loss rate of the observed sources (e.g. Olofsson et al. (1993), Schöier and

Olofsson (2001), Decin et al. (2007), Ramstedt et al. (2008)). In general, the radiative transfer models

combine the fitting of both the spectral line profiles and the velocity-integrated intensity in order to

estimate the mass-loss rate of the observed sources. However, because the calculated line profiles are

sensitive to small changes on different parameters used in the radiative transfer models, detailed fits to

the observed line profiles of each single transitions are rarely achieved. In addition, the estimated un-

certainties introduced by the calibration process itself on the measured integrated intensities is around

20%, even for observed data sets with high signal-to-noise ratios (Schöier and Olofsson 2001). This

together with the degeneracy of the parameter space make the determination of the mass-loss rates of

AGB sources to be a rather complex case.

The results from our simulated observations towards the synthetic sources suggest two different sit-

uations depending on whether the emission is spatially resolved or not. In the case of the spatially

resolved emission, the profiles of the spectral features (regardless the width and the peak intensity) do

not change as a function of the line-of-sight, i.e. either double-peaked, flat-topped, or parabolic pro-

files are observed for the same transition along the different line-of-sights. This is particularly true for

the three lower-energy transitions modelled (Ju ≤ 3) and can be seen even for the most oblate source

modelled (a = 0.5). This suggest that the most significant errors on the calculated mass-loss rate value

obtained from fitting the line profile relies on the parameters that account for the width and peak-flux of

the observed line, rather than on both the radial density and temperature distribution, and on the optical

depth of the observed transition inferred from the line shape. Therefore in the spatially resolved case,

fitting the line profiles assuming a spherically symmetric model could yield fair mass-loss rate estimates

whose reliability relies on the fit of the measured integrated intensity and on the errors intrinsic to the

parameter space of the model itself.

In order to investigate the effect induced by the oblateness on the velocity-integrated intensity (I)

measured towards the synthetic sources, I is calculated from the spectral features obtained from the

simulated observations towards the oblate sources and compared with the integrated intensities mea-

sured towards their spherical counterparts (Isph). The results are shown in Fig. 7.8, where the integrated
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intensities measured along the different line of sights (I0 observing along the minor axis, I45 observing

along the direction defined by θ = π/4, I90 observing along the major axis) are normalized with the

measured value for the spherical case (Isph). In the case of the resolved sources, the differences between

the measured Ii (i = 0, 45, 90) for each transition increases with the mass-loss rate of our modelled

synthetic objects. The largest difference is always seen towards the Ṁ−5 source, where with exception

of the J=1→0, the spectral profiles observed correspond to optically thick emission along the different

line-of-sights. Moreover, the differences between the integrated intesities measured along the different

line-of-sights increases with the Ju of the rotational transitions. The differences between the integrated

intensity measured for the transitions with Ju ≤ 6 along the different line-of-sights towards the Ṁ−7

source are not larger than 10% with respect to Isph, even for the more oblate synthetic sources. In the

case of the most oblate source with Ṁ−6, the largest difference between Ii and Isph for the transitions

with Ju ≤ 3 is measured along the minor axis, where I0 is 25% larger than Isph for the J=3→2, whereas

for the J=1→0 and J=2→1 the difference with Isph is not larger than 20%.

The scenario is different for the two higher Ju transitions of our models. Although for the a = 0.9

source with Ṁ−6 the difference with respect to the spherical case is not larger than 10% for both the

J=6→5 and the J=15→14, the difference increases for the more oblate sources. In the a = 0.7 case,

the measured I0 for the J=6→5 transition is 40% and 30% larger than I90 and Isph, respectively, and

becomes even larger for the source with a = 0.5 (I0/I90 ∼ 1.75 and I0/Isph ∼ 1.55). Therefore, fitting the

velocity-integrated intensity of rotational transitions of CO with Ju ≤ 6 towards resolved sources with

Ṁ < 10−6 M⊙ yr−1 could yield reliable results even if the source is assumed spherically symmetric. For

sources with higher mass-loss rates, fitting the integrated intensity measured from rotational transitions

with Ju ≤ 3 assuming that the source is spherically symmetric could still yield reliable values for oblate

sources with minor-to-major axis ratio ≥ 0.7. However, such assumption could lead to significant errors

on the mass-loss rate estimated from fitting the velocity-integrate intensity measured from higher J

transitions of CO.

The velocity-integrated intensities measured along the different line-of-sights towards the more dis-

tant synthetic sources are also compared with the measurements done towards their spherical counter-

part. Notices that, in this case, observing along the minor axis yields a larger integrated intensity value

with respect to both I45 and I90 in all the cases, whereas observing along the major axis results in the

lowest value. The ratio formed by I0/I90 increases with both the Ju number of the transition and the

oblateness of the source. The largest difference is measured towards the Ṁ−5 source for the transitions

with Ju ≤ 6. In fact, observing along the minor axis towards the Ṁ−5 source with minor-to-major axis

ratio a = 0.7 results in I0 being 20% higher than Isph in the J=1→0 transition, whereas I0/Isph ∼ 1.4 for

the other transitions with Ju ≤ 6.

In the case of the Ṁ−6 and Ṁ−7 sources with a = 0.9, Ii/Isph ∼ 1 for the J=1→0 transition, while

for the other transitions with Ju ≤ 6 the largest difference with respect to the spherical case is lower

than 10%. For the more oblate sources the J=2→1 and J=3→2 transitions appears to be more sensitive

to the oblateness than towards the closest source. It may be related to the fact that the line profiles
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7 CO line emission from asymmetrical AGB sources

Figure 7.8: Integrated intensity values measured for the different mass-loss rates values considered in our models,

for the two distances assumed, (left) 150 pc and (right) 1 kpc. The values presented are normalized with the

integrated intensities measured for each transition for the a = 1 case.
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along the different line-of-sights correspond to either optically thin emission (along the minor axis)

or optically thick emission (along the major axis). In the case of the oblate source with minor-to-

major axis ratio a = 0.7, the difference between I0 and I90 is about 15% towards Ṁ−7, but not larger

than 10% the Isph. For the J=6→5 transition, the difference on the measured integrated intensity by

observing along the minor and major axis is about ∼ 35%, whereas with respect to the spherical case

the differences are about 20%. Therefore, the fact that observing along the different line-of-sights yields

such differences on the velocity-integrated intensity may be reflected on the mass-loss rate values that

could be estimated from fitting the integrated intensity measured towards an observed source. Different

from the spatially resolved case where the differences between the line profiles is only minor (compared

to the spatially unresolved case) and the emitting region traced is consistent along the three line-of-

sights, the interplay between fitting both the velocity-integrated intensity and the shape of the line may

lead to a large uncertainty range on the case of the synthetic unresolved sources.

In order to estimate the difference between the mass-loss rate derived from fitting the velocity-

integrated intensity from the observations along the different line of sights, we use the formula derived

by Ramstedt et al. (2008)

Ṁ = sJ

(

ICOθ
2
bD2)aJvbJ

e f
−cJ

CO
, (7.7)

where Ṁ is given M⊙ yr−1, θb is the telescope’s beam size, D is the distant to the source, ve the

expansion velocity of the CSE and fCO the fractional abundance of the CO molecule. The parameters

sJ , aJ , bJ and cJ were obtained from fitting the Eq. 7.7 to the output of their radiative transfer models

calculated for a grid of 60 sample stars (Ramstedt et al. 2008). According to the autors this formula

only applies to unresolved emission, and the values of the parameters mentioned above are valid within

the ranges 10−7 ≤ Ṁ ≤ 10−5 M⊙ yr−1, 5 ≤ ve ≤ 20 km s−1, 10−4 ≤ fCO ≤ 10−3 (see the Table A1

in their paper). Because the results of Eq. 7.7 are consistent with the results of their 1-D Monte Carlo

radiative transfer code, we use it in order to estimate the mass-loss rate from the velocity-integrated

intensity measured along the different line-of-sights. Given that the expansion velocity obtained from

the spectral profiles detected along the major axis is the same than in the spherical case, the comparison

between the mass-loss rates is straightforward in this particular case. Thus

Ṁ90

Ṁsph

=

(

I90

Isph

)aJ

, (7.8)

allows to estimate the mass-loss rates assuming that the source is spherically symmetric, and then

compare it with the spherically symmetric counterpart. For the synthetic object with a = 0.9, using

the I90 measured for the J=3→2 towards the Ṁ−6 source and aJ(J = 3 → 2) = 0.91, the mass-loss

rate estimated is only ∼ 1.8% lower than the mass-loss rate of the spherically symmetric source. In

other words, assuming that the oblate source with a = 0.9 is spherically symmetric and then fitting

the measured I90, lead to slightly underestimate its mass-loss rate if it is estimated using the J=3→2
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transition. The integrated intensities measured for the J=2→1 and J=1→0 along the major axis yield

similar values than the observations towards the spherical source. Hence, assuming that the source is

spherically symmetric yield accurate estimates of the mass-loss rate for the slightly oblate, unresolved

synthetic sources.

In the case of the oblate source with a = 0.7, using the integrated intensities for the three lower

transitions measured along the major axis towards the Ṁ−6 source results in mass-loss rates that are 1.9%

higher (J=1→0), and 2.7% (J=2→1) and 6.7% (J=3→2) lower than the spherical case. Furthermore,

in the case of the more oblate source (a = 0.5), the mass-loss rate estimated using the J=1→0 is 4.7%

higher than Isph, while for J=2→1 and J=3→2 it is 4.3% and 12.9% lower, respectively. Because the

ratios I90/Isph are in general closer to the unity for the Ṁ−7 source than for the higher mass-loss rate

sources, fitting the velocity-integrated intensity of CO rotational transitions with Ju ≤ 3, and assuming

that the source is spherically symmetric, could yield reliable estimates of the mass-loss rate. Therefore,

a (conservative) uncertainty range for observations along the major axis will be 20% for the synthetic

sources with Ṁ < 5 × 10−6 M⊙ yr−1. On the other hand, because the ratio formed by Isph and I90

increases for the sources with higher mass-loss rates, to assume the source as spherically symmetric can

lead to underestimate the mass-loss rate of the source by larger factors than 20%.

Observing along the minor axis and the direction defined by θ = π/4 result in higher integrated

intensity values than along the major axis. Thus, in principle, fitting the integrated intensity measured

along the major axis towards our synthetic sources, for instance, will lead us to derive a different mass-

loss rate value, higher than the estimated value along the major axis for oblate sources with a ≤ 0.7.

When a circumstellar envelope is observed, the expansion velocity of the emitting region is derived from

the width of the spectral features detected. Hence, the CSEs are assume to be spherically symmetric,

and half the width of the line profile to be its overall expansion velocity. Then, given that the line-of-

sight velocity for the observations along the minor axis and along the direction defined by θ = π/4 are

scaled by 1/a and by the expression in Eq. 7.6, respectively, we used Eq. 7.7 in order to calculate the

velocity-integrated intensity for a source with Ṁ = 5× 10−6 M⊙ yr−1 from the CO rotational transitions

with Ju ≤ 3

ICO =
˙Msph

θ2
b
D2
(

sJv
bJ
e f
−cJ

CO
)1/aJ

. (7.9)

This allow us to compare the mass-loss rate estimated for a spherical source, whose ve is inferred

from the line profile observed towards the oblate sources, with the mass-loss rate estimated using I0.

Observations along the minor axis yield spectral features 28.6 km s−1 wide for the source with a = 0.7,

which implies that the expansion velocity of the observed source is ∼ 14.3 km s−1. Hence, from the

expression

Ṁ0 =

(

I0

ICO

)aJ

Ṁsph, (7.10)
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the mass-loss rate estimated using the integrated intensity measured along the minor axis for the

J=3→2 transition towards the oblate source with Ṁ−6 is ∼ 70% higher than the value estimated for

a spherically symmetric source whose expansion velocity is ∼ 14.3 km s−1. Therefore, using a 1-

D radiative transfer code will lead to significantly overestimate the mass-loss rate of the synthetic,

unresolved sources.

The discrepancy between the mass-loss rate derived fitting both the line profile and the velocity-

integrated intensities measured along the different line of sights for the rotational transitions with Ju ≥ 6

modelled appears to be even more critical. In particular, the J=15→14 transition exhibit large differ-

ences between both the line profile and integrated intensity measured along the minor and the major

axis towards the more distant source. In contrast with the integrated intensity measured for the other

rotational transitions, the larger difference between I0 and I90 is measured for the lowest mass-loss rate

source modelled. Because it traces the innermost regions of the CSEs modelled, the line profile and the

integrated intensity of the J=15→14 transition is more sensitive to the oblateness of the source. In fact,

for the source with a = 0.9 and Ṁ−7, the difference between the integrated intensities measured along

the minor and major axis is ∼ 20%. Therefore, it seems unlikely to obtain reliable mass-loss rates val-

ues from the observations towards the oblate synthetic sources fitting the spectral features and integrated

intensities measured for the high J transitions assuming that the source is spherically symmetric.

7.4 Conclusions

We have modelled circumstellar emission using the 3-D radiative transfer code LIME for five CO ro-

tational transitions: J=1→0, J=2→1, J=3→2, J=6→5, and J=15→14. The models have been

calculated for sources whose mass-loss rates are Ṁ = 5 × 10−7, 10−6, 105 M⊙ yr−1 assuming the CSEs

as oblate spheroids with minor-to-major axis ratios of 0.5, 0.7, 0.9, and 1.0 which stands for the spher-

ically symmetric case. Then, in order to simulate single-dish radio observations, we have convolved the

synthetic brightness distribution with a 2-D gaussian kernel using the CASA task imsmooth. The obser-

vations have been simulated towards each single source along three different line of sights: Along the

minor and major axis, as well as along an intermediate direction defined by θ = π/4 (where θ is the po-

lar angle measured from the z-axis). Both the line profile and the velocity-integrated intensity has been

obtained from the simulated observations along each line of sight towards the synthetic sources located

at 150 pc and 1 kpc. Our results suggest that in the case of spatially resolved emission, which is the case

of rotational transitions with Ju ≤ 3 observed towards the closest synthetic source, the difference on the

line profile and the velocity-integrated intensity for the synthetic sources with Ṁ ≤ 5 × 10−6 M⊙ yr−1

could lead to accurate estimates of their mass-loss rates assuming that the CSEs are spherically sym-

metric. On the other hand, the differences of the line profiles observed towards the most distant source

along the different line of sights suggest that to estimate the mass-loss rate assuming that the emitting

region is spherically symmetric could lead to reliable values only if the source has minor-to-major ratio

a ≥ 0.9. Fitting both the line profile and the integrated intensity measured for a particular rotational
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transition for most oblate sources assuming them to be spherically symmetric leads to mass-loss esti-

mates which, depending on the line of sight, can be larger than 20% the mass-loss rate of the observed

synthetic source.

The results presented in this chapter are still preliminary, and will be complemented by using a 1-D

Monte Carlo radiative transfer code in order to fit both the line profiles obtained from the simulated

observations and the velocity-integrated intensity measured towards the synthetic sources. A similar

analysis will be performed for the results of the modelled 13CO emission. These results will be submit-

ted for publication to the Astronomy and Astrophysics journal.
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CHAPTER 8

Summary

In this thesis work, theory, observations, and computational models are combined aiming to study the

emergence of asymmetries in the CSEs of AGB and post-AGB stars. This research has been focused

on both the role played by large scale magnetic fields in the collimated bipolar outflows observed to-

wards Water Fountains, and on the analysis of molecular line emission towards synthetic sources whose

morphology resemble oblate ellipsoids.

One of the methods commonly used for the study of the magnetic field towards the CSEs of AGB

and post-AGB stars is based on the detection of polarized maser emission. Since there are non-Zemman

effects which can mimic or enhance the polarization state of the maser radiation, an analysis of the

polarization properties of SiO, H2O and HCN have been carried out. The aim of this study is to de-

termine the maximum fractional linear polarization that can be detected in the ALMA frequency range

which can be truly related to the presence of a magnetic field in the region where the maser emission

is generated. We find that even for the high J transitions of SiO, H2O and HCN, maser emission can

be observed in the (sub)millimeter frequency range with suitable fractional linear polarization levels to

trace the magnetic field morphology towards late-type stars even if the detected polarization has been

affected by non-Zeeman effects.

In the observational context, this thesis includes the results of radio observations of both H2O po-

larized maser emission and radio continuum emission. The observations were carried out using the

Australia Telescope Compact Array (ATCA) towards two (out of 14 known up to date) water fountain

sources. The results of these observations include the detection of fractional linear polarization of H2O

maser emission arising from the high-velocity outflows of the sources IRAS 15445−5449 and IRAS

18043−2116, whose polarization vector are tracing either the poloidal or toroidal component of the

magnetic field along the bipolar outflows. Furthermore, we have resolved, for the first time towards a

source of this kind, synchrotron emission which is consistent with the direction of the bipolar outflow

observed at the infrared towards the source IRAS 15445−5449. The non-thermal emission is found trac-
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ing its collimated jet, implying that the toroidal component of the magnetic field collimates the bipolar

outflow.

Finally, molecular 12CO line emission from synthetic sources is modelled aiming to analyse the

spectral features which could be detected towards CSEs of AGB stars whose morphologies resemble

spheroids with different degrees of oblateness, mimicking the onset of collimated outflows. The 3-D

radiative transfer code LIME is implemented in order to solve the equation of transfer throughout the

oblate CSEs, along the major and minor axis, as well as along an intermediate direction. Then, the

brightness distribution of CO obtained is convolved with a 2-D gaussian kernel aiming to simulate radio

observations towards the synthetic sources using beam sizes of real radio telescope. We compare both

the spectral line profiles and the velocity-integrated intensity obtained from the simulated observations

towards the oblate CSEs with the spherically symmetric case. The simulated observations have been

carried out for modelled sources with distances 150 pc and 1 kpc, this in order to analyse both, spatially

resolved and unresolved emission. Our results suggest the uncertainties on the mass-loss rate estimated

for sources with Ṁ < 10−6 M⊙ yr−1 from fitting both the line profile and the velocity-integrated intensity

of CO rotational transitions with Ju ≤ 3 are unimportant even if the source is assumed to be spherically

symmetric. On the other hand, when including in the analysis those CO transitions with Ju ≥ 6 the

effects of even slight asymmetries become relevant. Furthermore, we find that the differences of line

profile and integrated intensity of transitions with Ju ≥ 6 for the unresolved source are such that an

accurate mass-loss estimate from those transitions seems unlikely.

8.1 Outlook

The study of the formation of the aspherical morphologies observed towards PN sources have gained

great interest and relevance during the last decades. The results from my thesis a strong fundation for

research that can be carried out in the near future.

The construction and functionality of cutting-edge telescopes as ALMA, the constant upgrading of the

technology used on telescopes like JVLA and ATCA, and the improvement of both observation tech-

niques and software for calibration and analysis of data, have been gradually increasing the range of

accessible frequencies for the astronomy community, and in particular, for the study of AGB and post-

AGB stars. Within the submillimeter wavelength range, a number of molecular transitions generating

both thermal emission line and maser emission can be observed towards AGB, post-AGB and PNe

sources. For instance, both interferometric and single-dish (sub-)millimeter observations of CO emis-

sion towards late-type stars are a powerful tool to constrain the distribution of the molecular gas content

of the CSEs of this kind of sources. JVLA, ALMA, and APEX observations towards late-type stars

could lead to detailed studies aimed to unveil the dynamics of the molecular gas component of the CSEs

within different spatial scales. My thesis work naturally leads into for example the following research

topics
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• Observation of radio continuum emission towards post-AGB sources: Water fountains. We will

continue our study of radio continuum emission towards bipolar post-AGB sources. This project

will be part of a survey of radio and millimeter continuum emission using interferometric obser-

vations using JVLA and ATCA. Our detection of highly collimate synchrotron emission towards

the post-AGB source IRAS 15445-5449 has raised the question about the kind of sources that

could produce non-thermal continuum emission. Our first group of candidates to be tested will

be the Water fountain sources. The outstanding sensitivity provided by the JVLA from band L up

to band Q will allows to detect radio-continuum emission from the water fountain sources at the

northern hemisphere, generating a data set which will be complemented with ATCA observations

towards those sources at the southern sky. This will allow us to measure the spectral index of the

spectral energy distribution covering the frequency range [1, 40] GHz

• Interferometric observations of CO emission towards bipolar and multipolar post-AGB stars. The

results of the models in this thesis are also a strong basis for ALMA observations of 12CO (1-0),

(2-1) and (3-2) rotational transitions towards bipolar and multipolar post-AGB stars. Imaging with

the high spatial resolution that can be achieved by ALMA will allow us to trace the molecular gas

content of the bipolar structures. If the axisymmetric structures observed are due to the action

of high-velocity outflows, then the molecular gas emission can be used to infer the strength and

momentum of the outflow at different regions along the axis that it defines, as well as the nature

of the shocks involved during the formation of such bipolar or multipolar structures. Combining

these with mid-infrared observations performed with VISIR, MIDI and AMBER, will allow us to

correlate the molecular gas distribution with the dust distribution along the outflows, as well as

to probe the outflow launching region at the near- and mid-IR. Furthermore, once ALMA starts

working with full polarization capabilities, observations of polarized CO emission lines produced

by the Goldreich-Kylafis effect will allow us to probe the influence of the stellar magnetic field

on the collimation of the outflows.

• Observation of submillimeter maser emission towards AGB stars. We will create a large data set

of submillimeter and millimeter observations of SiO, H2O and HCN polarized maser emission

towards late-type stars. The high spatial resolution that can be achieved with ALMA observations

will allow us to study the polarization properties of a number of rotational transitions of SiO,

H2O and HCN within a frequency range which has been little explored. This data set will allow

us to complement the theoretical study of the levels of fractional linear polarization that could be

detected towards AGB stars, presented in Chapter 4. The results from the observations will lead

us to settle a complete research work that could eventually be used in order to prepare ALMA

observation programs including polarized maser emission.
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