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ABSTRACT

We present Very Long Baseline Interferometry (VLBI) observations of 22

GHz H2O masers in the high-mass star-forming region of W75N, carried out

with VLBI Exploration of Radio Astrometry (VERA) for three-epochs in 2007

with an angular resolution of ∼ 1 mas. We detected H2O maser emission toward

the radio jet in VLA 1 and the expanding shell-like structure in VLA 2. The

spatial distribution of the H2O masers detected with VERA and measured proper

motions around VLA 1 and VLA 2 are similar to those found with previous

VLBI observations in epochs 1999 and 2005, with the masers in VLA 1 mainly

distributed along a linear structure parallel to the radio jet and, on the other

hand, forming a shell-like structure around VLA 2. We have made elliptical fits

to the VLA 2 H2O maser shell-like structure observed in the different epochs

(1999, 2005, and 2007), and found that the shell is still expanding eight years

after its discovery. From the difference in the size of the semi-major axes of the

fitted ellipses in the epochs 1999 (≃ 71±1 mas), 2005 (≃ 97±3 mas), and 2007

(≃ 111±1 mas), we estimate an average expanding velocity of ∼ 5 mas yr−1,

similar to the proper motions measured in the individual H2O maser features. A

kinematic age of ∼ 20 yr is derived for this structure. In addition, our VERA

observations indicate an increase in the ellipticity of the expanding shell around

VLA 2 from epochs 1999 to 2007. In fact, the elliptical fit of the VERA data

shows a ratio between the minor and major axes of ∼ 0.6, in contrast with a

most circular shape for the shell detected in 1999 and 2005 (b/a ∼ 0.9). This

suggests that we are probably observing the formation of a jet-driven H2O maser

structure in VLA2, evolving from a non-collimated pulsed-outflow event during

the first stages of evolution of a massive young stellar object (YSO). This may

support predictions made earlier by other authors on this issue, consistent with
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recent magnetohydrodynamical simulations. We discuss possible implications of

our results in the study of the first stages of evolution of massive YSOs.

Subject headings: ISM: individual (W75N) – ISM: jets and outflows – masers (H2O) –

ISM: kinematics and dynamics – stars: formation
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1. INTRODUCTION

In high-mass star forming regions, H2O masers are locally generated and pumped by

the interaction of supersonic outflows from a central young stellar object (YSO) with a

clumpy medium (e.g., Elitzur 1992). Since H2O masers are bright and compact sources,

they are one of the major targets for Very Long Baseline Interferometry (VLBI) with

milliarcsecond (mas) angular resolution, being a powerful tool to know the structure and

kinematics of the gas close to massive YSOs. In fact, VLBI and long-term monitoring

observations of H2O masers have provided basic physical information for star-forming

regions producing maser emission, revealing, for example, the internal structure of clusters

of masers, the variability of their flux densities, radial velocities, proper motions, structure

of the magnetic field, and evolutionary stages of massive protostars (e.g., Goddi et al. 2006;

Surcis et al. 2011; Bartkiewicz & van Langevelde 2012; Chibueze et al. 2012; Torrelles et al.

2012; Vlemmings 2012).

W75N is a massive star-forming region located in the Cygnus X complex of

dense molecular clouds (Dickel, Dickel, & Wilson 1978; Shepherd, Testi, & Stark 2003;

Persi, Tapia, & Smith 2006). The detection of H2O, OH, and CH3OH masers in the vicinity

of the radio continuum sources VLA 1, VLA 2, and VLA 3 indicates that they are massive

YSOs in their early stages of evolution, probably early B spectral types (Baart et al.

1986; Hunter et al. 1994; Torrelles et al. 1997; Shepherd, Kurtz, & Testi 2004; Surcis et al.

2009; Carrasco-González et al. 2010). These three sources are located within an area of

∼ 1.5′′×1.5′′ (∼ 3000 AU×[d/2 kpc])1, with VLA 1 and VLA 3 showing elongated radio

1Most of the works published on W75N have been reported assuming a distance of 2 kpc

(Fischer et al. 1985). However, a new estimate of 1.3 kpc for the distance has been recently

reported through trigonometric parallax measurement (Rygl et al. 2012). All parameters

given in this paper that depend on the distance are normalized to the distance of 2 kpc
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continuum emission interpreted as arising from radio jets, and VLA 2 showing compact

unresolved continuum emission (≤ 0.08′′) at cm wavelengths with a still unknown nature

(Torrelles et al. 1997, Carrasco-González et al. 2010).

VLBI multi-epoch observations of H2O masers carried out with the Very Long Baseline

Array (VLBA) in 1999 show remarkable different geometry of outflow ejections in VLA 1

and VLA 2, both objects separated by ∼ 0.7′′ (1400 AU×[d/2 kpc]; Torrelles et al. 2003,

hereafter T03). In fact, the H2O masers associated with VLA 1 are distributed along

a linear structure parallel to its radio jet, with mean proper motions of ∼ 2 mas yr−1

(19 km s−1×[d/2 kpc]), tracing a collimated jet-like outflow at scales of ∼ 1′′ (2000

AU×[d/2 kpc]). On the other hand, the masers associated with VLA 2 display an almost

circular shell-like structure of ∼ 0.08′′ radius (160 AU×[d/2 kpc]) around the central

compact radio continuum source, moving outward in multiple directions with a mean proper

motion of ∼ 3 mas yr−1 (28 km s−1×[d/2 kpc]) and estimated kinematic age of 13 yr. T03

interpret this structure as a wind-driven shell from the central massive YSO. This result was

surprising since the current paradigm of star formation through accretion disks, ejecting

gas via magnetohydrodynamical (MHD) mechanisms, does not predict outflows expanding

without any preferential direction, but producing collimated outflows (e.g., Garay & Lizano

1999; McKee & Tan 2002). On the basis of these VLBA results, T03 suggested that at the

first stages of evolution of massive protostars there may exist short-lived events with very

poorly collimated outflows. Very recently, this has been theoretically proved by Seifried

et al. (2012), who performed MHD simulations of massive star formation by including

both strong and weak magnetic fields. They found that at the earliest stage, in the case

of a strong magnetic field, the outflows are poorly collimated for a short-lived period. In

for a proper comparison with results from previous works, but allowing accurate parameter

estimates for the new reported distance of 1.3 kpc.
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addition, since the motions of the shell-like structure in VLA 2 are observed at a smaller

scale than the collimated motions in the nearby VLA 1 source, T03 suggested that VLA 2

is in an earlier stage than VLA 1 and could evolve in the future into a collimated jet-like

structure. More recently, Surcis et al. (2011; hereafter S11) compared the distribution

of the masers around VLA 2 observed in 1999 (T03) and in a single-epoch of 2005 (S11)

and found an average expansion velocity for the shell-like structure of ∼ 4.8 mas yr−1

(46 km s−1×[d/2 kpc]) in the time span of six years (1999−2005). In addition, these

authors noted that there are preferential gas movements northeastward in the VLA 2 shell,

suggesting the formation of a jet.

In this paper, we present three epochs of VLBI observations of H2O masers in W75N

carried out with the VLBI Exploration of Radio Astrometry (VERA) in 2007. The main

goal of this work is to know the evolution of the expanding shell-like structure of VLA 2

by extending the timescale of the observations (1999-2007). In §2 we describe the VERA

observations and data analysis, presenting the results in §3. In §4 we discuss the comparison

of our results with those obtained from previous epochs of VLBI observations, focusing

primarily on the evolution of the expanding H2O maser shell-like structure of VLA 2.

Their implications in the study of young massive protostars are also discussed. Our main

conclusions are presented in §5.

2. OBSERVATIONS AND DATA ANALYSIS

The three-epoch of H2O maser line (616 − 523, 22235.080 MHz) observations toward

W75N were carried out on 2007 January 20, 2007 February 21, and 2007 May 29 with

VERA, a Japanese VLBI facility, including all four 20-m antennas. The baseline length of

VERA ranges from 1,019 km to 2,270 km. All VERA antennas have a facility of dual-beam

receiving system (Haschick et al. 1981; Kawaguchi et al. 2000). The unique dual-beam
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mode enables us to carry out more effective phase-referencing VLBI observation than the

conventional antenna in nodding mode, by simultaneously observing target and reference

sources separated within 2.2◦. We utilized the dual-beam mode for W75N by taking the

galactic radio continuum source Cygnus X-3. However, since the microquasar Cygnus X-3

is a transient source, we only detected fringes for the first and third epoch during its flaring

states. As a result, it has not been possible to carry out the phase referencing technique for

W75N.

In each of the three epochs, the total observation time was 8 hours. All VERA

stations had no systematic and technical problems. Left-handed circular polarization was

received and sampled with 2-bit quantization, and filtered using the VERA digital filter

unit (Iguchi et al. 2005). The data were recorded onto magnetic tapes at a rate of 1024

Mbps, providing a total bandwidth of 256 MHz. We chose the VERA 7 mode in which

one intermediate frequency (IF) was assigned to W75N and the other 15 IFs were assigned

to Cygnus X-3. The well-known, bright continuum source BL Lac was observed every 70

minutes for the bandpass and delay calibrations. The system noise temperatures including

atmospheric attenuation, sensitive to weather conditions and the elevation angle of the

observed source, were measured with the chopper-wheel method (Ulich & Haas 1976). The

aperture efficiencies of the antennas ranged from 45% to 52%, depending on each VERA

station (see the VERA status report 2). A variation of the aperture efficiency of each

antenna as a function of the elevation angle was confirmed to be less than 10% at the lowest

elevation in the observations around ∼ 20◦.

Correlation processing was performed on the Mitaka FX Correlator (Chikada et al.

1991) located at the National Astronomical Observatory of Japan (NAOJ) Mitaka campus.

The accumulation period of the correlation was set to be 1 second. In the process of

2http://veraserver.mtk.nao.ac.jp/restricted/CFP2010/status10.pdf
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correlation, the bandwidth of the IF for W75N was reduced from 16 MHz to 8 MHz for

H2O maser line, divided by 512 channels of 15.625 kHz width, corresponding to a velocity

resolution of 0.21 km s−1. Therefore, the total velocity coverage is 107.5 km s−1, centered

at the local standard of rest velocity VLSR = 12.3 km s−1.

Calibration and imaging were performed using the Astronomical Imaging Processing

System (AIPS) of the National Radio Astronomy Observatory (NRAO). The amplitude

calibrations were performed based on the system noise temperatures during the observations.

We used this data for the bandpass calibrations and the determination of clock and clock-

rate offset. The Doppler shift due to the Earth’s motion was corrected with the AIPS

spectrum channel correction task, CVEL. The observed frequencies of the maser lines in

each channel were converted to radial velocities with respect to the local standard of rest

(LSR) using the rest frequency of 22.235080 GHz for the H2O 616 − 523 transition. For

the three epochs of observations, the cross-correlation spectra of H2O maser are shown in

Figure 1. The cross-power spectra of all VERA baselines were checked to choose a single

frequency channel of emission with unresolved structure and without rapid amplitude-time

variation. The fringe fitting process was carried out using the task FRING with an option

of no delay search for the selected frequency channel. With the task IMAGR, a synthesized

image was made from fringe-fitted data with a 0.1 mas pixel for a region of 1024×1024

pixels, or ∼100×100 mas2. Phase and amplitude self-calibrations were carried out based on

a synthesized image as an initial model: a strong, point-like H2O maser identified at VLSR

≃ 7.9 km s−1 and associated with W75N VLA 2. For this maser we estimated absolute

coordinates: α(J2000) = 20h38m36.49s (±0.01s), δ(J2000) = 42◦37′34.3′′ (±0.1′′).

As a result of the phase and amplitude self-calibrations, we obtained the complex

gains that we applied to the rest of frequency channels to produce the phase and

amplitude-calibrated synthesized images in each channel. The resulting synthesized beams
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were 1.2×0.8 (first epoch), 1.2×0.9 (second epoch), and 1.4×0.9 (third epoch) in units of

mas. To search for H2O maser emission, a region of 2′′×2′′ was examined including VLA 1,

VLA 2, and VLA 3. H2O maser emission was detected toward VLA 1 and VLA 2, with

typical rms values of ∼ 2, 0.9, and 0.3 Jy beam−1 for the first, second, and third epoch,

respectively. In the first epoch, the relatively higher rms value is due to high system

temperatures of ∼1,000 K and ∼800 K in the Iriki and Ishigaki stations, respectively. To

identify the H2O masers, we adopted a signal-to-noise ratio ≥ 6 as the detection threshold.

The maser emission occurring at a given velocity channel and position (hereafter referred

as maser spot) was fitted by two-dimensional elliptical Gaussian using the task JMFIT of

AIPS to obtain necessary information such as the position, flux density, and radial velocity.

The accuracy in the relative positions of the maser spots at each epoch is better than ∼

0.1 mas (estimated from the beam size and signal-to-noise ratio of the emission).

To measure the proper motions of the H2O masers, an initial, preliminary alignment of

the three epochs was made with respect to the reference maser spot used for self-calibrating

the data. Within this reference system, we measured the proper motions of three masers

that persisted in all three epochs through a linear fitting of their positions, and of 37

masers that appeared in two different epochs. To consider the persisting masers we applied

the criterion of having the same radial velocity (VLSR) in the different epochs and moving

with proper motions within ∼ 10 mas yr−1 (100 km s−1×[d/2 kpc]). However, the selected

reference maser spot may have its own proper motion, introducing an arbitrary offset to

the proper motions of all the masers. To minimize this effect, we subtracted the mean

proper motion vector of all these 40 masers from the proper motion of each maser, making

a realignment of the three epochs. The proper motion values of the 40 masers that we

present in Table 1 have been obtained after this realignment.
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3. RESULTS

We have detected two clusters of H2O masers, one associated with VLA 1 and the

other with VLA 2. No maser emission was detected toward VLA 3. In Figure 2, we present

the spatial distribution of the masers in VLA 1 and VLA 2 as observed with VERA for

three epochs in 2007. Globally, the maser distribution is similar to that previously reported

with VLBA in 1999 (T03) and 2005 (S11). In fact, while the H2O masers in VLA 1 are

mainly distributed along a linear structure parallel to its radio jet, the masers in VLA 2 are

distributed in a shell-like structure surrounding the compact radio continuum source. The

total H2O maser spots detected with VERA are 31, 106, and 141, with most of the masers

belonging to VLA 2, 25/31(80 %), 95/106 (90 %) and 92/144 (64 %) on 2007 January 20,

2007 February 21, and 2007 May 29, respectively. The probable reason for the relatively

small number of detected masers in the first epoch is the higher rms level in this set of

data in comparison with the other two epochs (see § 2). As a result, the shell-like structure

associated with VLA 2 is not clearly seen in the first epoch (Figure 2).

The H2O maser emission in VLA 1 spans a radial velocity range from VLSR ≃ 6 to

13 km s−1, while that in VLA 2 is in the range of 0−16 km s−1. We do not detect H2O

maser emission with VLSR lower than 0 km s−1, which was detected in the two previous

VLBA observations in 1999 (T03) and 2005 (S11), probably due to the high flux density

variability of the H2O masers. With respect to the proper motion of the H2O masers,

we estimate the mean values of ∼ 2.1 and 2.5 mas yr−1 (∼ 20 km s−1×[d/2 kpc] and ∼

24 km s−1×[d/2 kpc]) in VLA 1 and VLA 2, respectively (Figures 3 and 4; Table 1). These

mean values are very similar to those obtained previously with the VLBA observations

in 1999, ∼ 2 and 3 mas yr−1, respectively (T03). In §3.1 we will concentrate on the H2O

maser shell-like structure detected around VLA 2 based on an elliptical fitting analysis,

comparing our results with those from previous observations (T03, S11).
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3.1. Ellipticity of the Shell-like Structure around VLA 2

From Figure 4, we see that the northeastern and southwestern parts of the shell-like

structure as observed with VERA (epoch 2007) present proper motions mainly toward the

northeastern and southwestern directions, respectively, with similar proper motion values

(∼ 3 mas yr−1). The maximum angular separation from the northeastern and southwestern

parts of the shell (those indicated in Figure 4 by the labels B and D) is ∼ 220 mas, while

the maximum angular separation within the shell observed in 1999 was ∼ 154 mas (T03).

This increase in the angular separation between the tips of the shell in eight years (from

1999 to 2007) corresponds to an expanding velocity of ∼ 4 mas yr−1 from the center. This

expanding velocity is consistent with the proper motions measured in the individual masers

of our three epochs of VERA observations in 2007 (Figure 4; Table 1).

To perform a more detailed study of the evolution of the shell-like structure, we have

made elliptical fits to the H2O maser positions detected with the VLBA in 1999 (April

2, May 7, and June 4; hereafter epoch 1999.3) and 2005 (November 21; hereafter epoch

2005.9), and with VERA (January 20, February 21, and May 29; hereafter 2007.2). The

ellipses have been fitted by minimizing the chi-squared distribution of the distance measured

from the position of the masers to the ellipse, along a line connecting the maser to the

center of the ellipse. The main parameters of the elliptical fits, i.e. the semi-major (a) and

semi-minor axes (b), and the position angle, are listed in Table 2. In Figure 5 we show

the position of the masers and the resulting fitted ellipses for epochs 1999.3 (ellipse T99),

2005.9 (ellipse S05), and 2007.2 (ellipse K07), plotted together assuming the same center

position. We note that the parameters of the elliptical fits we list in Table 2 differ slightly

from those listed by S11 for epochs 1999.3 and 2005.9 due to a fault in the algorithm used

for the fitting in that previous paper.

Comparing the ellipses, we see that the semi-major axis has increased progressively
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during the time span of eight years, from 71±1 mas in 1999.3 (ellipse T99), to 97±3 mas

in 2005.9 (ellipse S05), and to 111±1 mas in 2007.2 (ellipse K07). This corresponds to

expanding velocities in the intervals T99−S05: 3.9±0.8 mas yr−1, S05−K07: 10.8±3.1

mas yr−1, and T99−K07: 5.1±0.2 mas yr−1. All these values for the expanding velocities

are compatible between them for the given errors we estimated, although showing some

indications that the shell has suffered an acceleration in the S05−K07 interval (see Figure

6). New epochs of VLBI H2O maser observations are necessary to clearly confirm it.

Another relevant result is that the expanding H2O maser shell-like structure has

increased its ellipticity. In fact, the ratio of semi-minor to semi-major axes of the fitted

ellipse (b/a) for epoch 2007.2 is ∼ 0.6, which is smaller than the one derived for the almost

circular shells observed in epochs 1999.3 and 2005.9, b/a ∼ 0.9 (see Figure 5). In addition,

a more dominant axis of expansion appears along the northeast-southwest direction in

epoch 2007.2 (PA ≃ 45◦; Figures 4 and 5). We discuss the implications of our results in the

study of the first stages of evolution of massive protostars in the next section.

4. Discussion

In this section, we focus on the long-term evolution of the H2O maser shell-like

structure associated with the massive YSO VLA 2. Our VERA observations have extended

the time scale in which this structure has been observed, by adding a third long-term epoch

(2007.2) to the observations of T03 (epoch 1999.3) and S11 (epoch 2005.9), providing a solid

result that the shell is still expanding in the plane of the sky at a velocity of ∼ 5 mas yr−1

(47 km s−1×[d/2 kpc]) eight years after its discovery.

The kinematic age of this expanding structure is ∼ 20 years up to the epoch 2007,

a value in agreement with the kinematic age of 13 years estimated from the VLBA
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observations of epoch 1999.3 (T03), considering the eight years between these observations

and our VERA observations. As discussed by T03, the most probably scenario for the

origin of this H2O maser structure is a wind-driven shell, for which they obtained a wind

mass-loss rate (Ṁw/M⊙ yr−1) = 8 × 10−7(n/108 cm−3)1/2(T/500 K)1/2, terminal wind

velocity (Vw/km s−1) = 100(n/108 cm−3)1/2(T/500 K)1/2 (where n and T are the particle

density and temperature of the shell, respectively), and density outside the shell (molecular

gas environment) (n0/cm
−3) = 2.6× 105(n/108 cm−3). These are reasonable parameters for

early B stars (Ṁw, Vw) and molecular core (n0). T03 and S11 also proposed that the ejected

wind from the central massive object should be non-collimated (to explain the almost

circular shape of the shell observed in epochs 1999.3 and 2005.9), as well as repetitive (to

explain the short kinematic age of the shell).

Besides that, the H2O maser structure continues to expand. Our VERA observations

also indicate an apparent increase with time in the ellipticity of the shell, from an almost

circular shape as observed in epochs 1999.3 and 2005.9 (b/a ∼ 0.9), to a more elliptical

shape as observed in epoch 2007.2 (b/a ∼ 0.6), with a more dominant expansion along

an axis with PA ∼ 45◦ (see §3, Figure 5 and Table 2). This result is consistent with the

prediction made previously by S11, who noted that in the epoch 2005.9 there are preferential

gas movements northeastward, suggesting the formation of a collimated outflow in that

direction (see H2O maser positions of S11 at ∼ [120, 80] mas in Figure 5). Furthermore,

we found out that the previous proper motion measurements of the H2O masers of the

VLA 2 shell in epoch 1999.3 were already showing larger velocities in the plane of the sky

along the northeast-southwest direction (see Figure 1 of T03). In VideoT03 (Figure 7;

published online), we show the expanding motions of the shell as measured by T03 but

extrapolated 10 years ahead starting in epoch 1999.3, where these main motions along the

northeast-southwest direction are clearly seen. We think that this gives even more support

to the northeast-southwest expansion direction of the shell in VLA 2.
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Based on these results, we suggest that we are probably observing the formation of a

collimated jet-driven H2O maser structure, evolving from a non-collimated pulsed-outflow

event during the first stages of evolution of a massive YSO. The position angle of the

new forming jet in VLA 2 would be ∼ 45◦, which interestingly is similar to the position

angle of the nearby more evolved VLA 1 radio jet (PA ∼ 40◦; T03), being separated both

YSOs by ∼ 0.7′′ (∼ 1400 AU×[d/2 kpc]). In addition, this position angle is close to

the direction of the large-scale magnetic field aligned to the large-scale bipolar molecular

outflow in the region (∼ 5′, or ∼ 3 pc, PA ∼ 70◦; Shepherd et al. 2003; S11), but it is far

from the average direction of the local magnetic field around VLA 2 (φVLA2
B ∼ 18◦; S11).

Actually, the local magnetic field around VLA 2 shows a radial morphology consistent

with the recent simulations of massive star formation (e.g., Seifried et al. 2012). This

suggests that the local magnetic field in the region plays an important role in the early

phases of the formation of the outflows but afterwards the large-scale magnetic field starts

to dominate also in VLA 2. Even though, S11 measured a stronger magnetic field around

VLA 2 (|B|VLA2
max ≈ 1000 mG) than around VLA 1 (|B|VLA1

max ≈ 800 mG). To explain the

evolution from a non-collimated outflow event to a collimated outflow in VLA 2, we

speculate on the presence of a disk-like gas structure around this massive object, oriented

southeast-northwest (perpendicular to the orientation of the local magnetic field in the

region). In this scenario, an “isotropic” ejection event from the central source would expand

more freely in the direction perpendicular to the disk-like structure, along the magnetic field

lines. If this scenario works, it would imply that the disk-like structure has a central “hole”

(cavity) of ∼ 60−90 mas radius, the size of the semi-minor axis of the shell. This scenario

fits quite well with the three-dimensional MHD simulations performed by Seifried et al.

(2012). They found that in the earliest stage of a massive star formation, the outflows are

non-collimated if a strong magnetic field is present. Afterwards, their collimation increases

quickly due to the development of a fast, central jet coupled to the build-up of a Keplerian
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disk.

“Short-lived” pulsed ejections (some of them isotropic or non-collimated) have been

observed through VLBI H2O maser observations in different massive protostars, including

W75N VLA2. It is still unclear whether these are non-standard phenomena in particular

types of sources, or if all massive protostars undergo short-lived pulsed ejection phases.

Nevertheless, their presence provides new insights in the study of the formation of high-mass

stars (e.g., Torrelles et al. 2001, 2011; Sanna et al. 2012; Trinidad et al. 2013). What we

are observing now in W75N VLA 2 is the likely formation of a collimated outflow from

a non-collimated expanding shell, as theoretically expected from the MHD simulations of

Seifried et al. (2012). However, we think that new epochs of VLBI H2O maser observations,

even in full polarization, are mandatory to confirm this tendency found with our VERA

observations (including a possible acceleration in the shell). JVLA observations at cm/mm

wavelengths would be very important to see if the central radio continuum source (VLA 2)

has also evolved into an elongated structure along the northeast-southwest direction, like

the nearby radio jet in VLA 1. High-angular resolution, sensitive (sub)mm observations to

study the dust and molecular gas distribution around VLA 2 would also help to understand

the evolution of this expanding shell.

5. Conclusions

We have carried out three epochs of VLBI observations of H2O masers during 2007

toward the high-mass star-forming region of W75N with ∼ 1 mas of angular resolution,

comparing our data with previously obtained in 1999 and 2005. We find that the H2O

maser shell associated with the massive YSO VLA 2 is still expanding at ∼ 5 mas yr−1 (∼

47 km s−1×[d/2 kpc]) eight years after its discovery in epoch 1999. The shell, with a current

size of 222 mas×136 mas (444 AU×272 AU at 2 kpc) and kinematic age of ∼ 20 yr, shows



– 16 –

a ratio between the minor and major axes of ∼ 0.6, in contrast with a most circular shape

of the shell as observed in 1999 and 2005. These results would suggest that we are probably

observing the formation of a jet-driven water maser structure, as previously proposed and

consistent with recent MHD simulations of massive star formation by Seifried et al. (2012).

These MHD simulations predict that at the earliest stage, the outflows are poorly collimated

for a short-lived period, evolving into a collimated outflow, as we are probably observing

in VLA 2. New epochs of VLBI H2O maser observations are mandatory to confirm this

tendency found with our VERA observations (including a possible acceleration in the shell).
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Fig. 1.— Example of scalar-averaged cross power spectra of W75N observed with the VERA

Mizusawa-Iriki baseline (1,276 km). The black, green, and orange solid lines represent the

observations on 2007 January 20, 2007 February 21, and 2007 May 29, respectively.
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Fig. 2.— Position of the H2O maser spots (filled circles) observed with VERA at 22 GHz

on 2007 January 20 (left), February 21 (middle), and May 29 (right panel) around the

VLA 1 and VLA 2 radio continuum sources (indicated by plus symbols). The filled circle

symbols of the masers are scaled logarithmically according to their peak flux density. Open

circle symbols for 5, 10, and 100 Jy beam−1 are shown in the upper left corner of the first

panel. The color of the symbols are codified by their radial velocity. The offset positions

are relative to the reference maser spot position (0, 0) used for self-calibrating the data. For

this maser we estimate absolute coordinates: α(J2000) = 20h38m36.49s (±0.01s), δ(J2000)

= 42◦37′34.3′′ (±0.1′′).
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Fig. 3.— Position of the H2O maser spots for all three epochs and measured proper motions

of the masers in VLA 1. The vectors indicate the direction and values of the proper motions

listed in Table 1. Sizes of filled circles and color codes are the same as those shown in Figure

2. Two groups of masers are shown as close-up.
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Fig. 4.— Position of the H2O maser spots for all three epochs and measured proper motions

of the masers in VLA 2. The vectors indicate the direction and values of the proper motions

listed in Table 1. Sizes of filled circles and color codes are the same as those show in Figure

2. Six groups of masers (A, B, C, D, E and F) are shown as a close-up.
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Fig. 5.— Elliptical fits for the H2O masers in VLA 2 observed with VLBI in epochs 1999.3

(T99), 2005.9 (S05), and 2007.2 (K07) by Torrelles et al. (2003), Surcis et al. (2011), and

this work, respectively.
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Fig. 6.— Evolution of the size of semi-major axis of the fitted ellipses to the expanding H2O

maser shell in VLA 2 for epochs 1999.3, 2005.9, and 2007.2 (Table 2).



– 26 –

Fig. 7.— Video showing the expanding motions of the shell as measured by T03 but ex-

trapolated 10 years ahead starting in epoch 1999.3. Dots represent the position of the water

masers detected by T03.
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SUPPORTING MATERIAL

Additional Supporting Information may be found in the online version of this article:

Animation. VideoT03.wmv: Motions of the H2O masers in the VLA 2 shell obtained

from the VLBA data of Torrelles et al. (2003), extrapolated to ten years starting on 1999

April 2. This animation shows larger velocities of the masers along the northeast-southwest

direction.
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